
User Manual
Nexto Xpress

MU216600 Rev. X

May 8, 2025

General Supply Conditions

No part of this document may be copied or reproduced in any form without the prior written consent of Altus Sistemas de
Automação S.A. who reserves the right to carry out alterations without prior advice.

According to current legislation in Brazil, the Consumer Defense Code, we are giving the following information to clients
who use our products, regarding personal safety and premises.

The industrial automation equipment, manufactured by Altus, is strong and reliable due to the stringent quality control
it is subjected to. However, any electronic industrial control equipment (programmable controllers, numerical commands,
etc.) can damage machines or processes controlled by them when there are defective components and/or when a programming
or installation error occurs. This can even put human lives at risk. The user should consider the possible consequences of
the defects and should provide additional external installations for safety reasons. This concern is higher when in initial
commissioning and testing.

The equipment manufactured by Altus does not directly expose the environment to hazards, since they do not issue any kind
of pollutant during their use. However, concerning the disposal of equipment, it is important to point out that built-in electronics
may contain materials which are harmful to nature when improperly discarded. Therefore, it is recommended that whenever
discarding this type of product, it should be forwarded to recycling plants, which guarantee proper waste management.

It is essential to read and understand the product documentation, such as manuals and technical characteristics before its
installation or use. The examples and figures presented in this document are solely for illustrative purposes. Due to possible
upgrades and improvements that the products may present, Altus assumes no responsibility for the use of these examples and
figures in real applications. They should only be used to assist user trainings and improve experience with the products and
their features.

Altus warrants its equipment as described in General Conditions of Supply, attached to the commercial proposals.
Altus guarantees that their equipment works in accordance with the clear instructions contained in their manuals and/or

technical characteristics, not guaranteeing the success of any particular type of application of the equipment.
Altus does not acknowledge any other guarantee, directly or implied, mainly when end customers are dealing with third-

party suppliers. The requests for additional information about the supply, equipment features and/or any other Altus services
must be made in writing form. Altus is not responsible for supplying information about its equipment without formal request.
These products can use EtherCAT® technology (www.ethercat.org).

COPYRIGHTS
Nexto, MasterTool, Grano and WebPLC are the registered trademarks of Altus Sistemas de Automação S.A.
Windows, Windows NT and Windows Vista are registered trademarks of Microsoft Corporation.

OPEN SOURCE SOFTWARE NOTICE
To obtain the source code under GPL, LGPL, MPL and other open source licenses, that is contained in this product, please

contact opensource@altus.com.br. In addition to the source code, all referred license terms, warranty disclaimers and copyright
notices may be disclosed under request.

I

www.ethercat.org
opensource@altus.com.br

CONTENTS

Contents

1. Introduction . 1
1.1. Documents Related to this Manual . 2
1.2. Visual Inspection . 2
1.3. Technical Support . 3
1.4. Warning Messages Used in this Manual . 3

2. Technical Description . 4
2.1. Panels and Connections . 4
2.2. Product Features . 5

2.2.1. General Features . 5
2.2.2. Standards and Certifications . 7
2.2.3. Memory . 8
2.2.4. Protocols . 9
2.2.5. RS-485 . 10
2.2.6. CAN . 10
2.2.7. USB . 10
2.2.8. Ethernet . 11
2.2.9. Power Supply . 11
2.2.10. Digital Inputs . 11
2.2.11. Fast Inputs . 12
2.2.12. Digital Outputs . 13
2.2.13. Fast Outputs . 13
2.2.14. Analog Inputs . 14
2.2.15. Analog Outputs . 15

2.3. Compatibility with Other Products . 16
2.4. Performance . 17

2.4.1. Interval Time . 17
2.4.2. Application Times . 17
2.4.3. Time for Instructions Execution . 17
2.4.4. Initialization Times . 17

2.5. Physical Dimensions . 18
2.6. Purchase Data . 19

2.6.1. Integrant Items . 19
2.6.2. Product Code . 19

2.7. Related Products . 20
3. Installation . 21

3.1. Mechanical Installation . 21
3.1.1. Installing the controller . 22
3.1.2. Removing the controller . 23

II

CONTENTS

3.2. Electrical Installation . 24
3.3. Ethernet Network Connection . 26

3.3.1. IP Address . 26
3.3.2. Gratuitous ARP . 26
3.3.3. Network Cable Installation . 26

3.4. Serial RS-485 and CAN Network Connection . 27
4. Initial Programming . 28

4.1. Memory Organization and Access . 28
4.2. Project Profiles . 30

4.2.1. Machine Profile . 30
4.3. CPU Configuration . 31
4.4. Libraries . 32
4.5. Inserting a Protocol Instance . 32

4.5.1. MODBUS Ethernet . 32
4.6. Finding the Device . 34
4.7. Login . 36
4.8. Run Mode . 38
4.9. Stop Mode . 39
4.10. Writing and Forcing Variables . 39
4.11. Logout . 40
4.12. Project Upload . 40
4.13. CPU Operating States . 42

4.13.1. Run . 42
4.13.2. Stop . 42
4.13.3. Breakpoint . 42
4.13.4. Exception . 42
4.13.5. Reset Warm . 42
4.13.6. Reset Cold . 42
4.13.7. Reset Origin . 42
4.13.8. Reset Process Command (IEC 60870-5-104) . 43

4.14. Programs (POUs) and Global Variable Lists (GVLs) . 43
4.14.1. MainPrg Program . 43
4.14.2. StartPrg Program . 43
4.14.3. UserPrg Program . 43
4.14.4. GVL IntegratedIO . 44
4.14.5. GVL System_Diagnostics . 44
4.14.6. GVL Disables . 45
4.14.7. GVL Qualities . 46
4.14.8. GVL ReqDiagnostics . 48

5. Configuration . 50
5.1. Device . 50

5.1.1. User Management and Access Rights . 50
5.1.2. PLC Settings . 50

5.2. Controller’s CPU . 52
5.2.1. General Parameters . 52
5.2.2. Time Synchronization . 53

5.2.2.1. IEC 60870-5-104 . 53
5.2.2.2. SNTP . 54

III

CONTENTS

5.2.2.3. Daylight Saving Time (DST) . 54
5.2.3. Internal Points . 54

5.2.3.1. Quality Conversions . 56
5.2.3.1.1. Internal Quality . 56
5.2.3.1.2. IEC 60870-5-104 Conversion . 58
5.2.3.1.3. MODBUS Internal Quality . 59

5.3. Serial Interface . 60
5.3.1. COM 1 . 60
5.3.2. Advanced Configurations . 61

5.4. Ethernet Interface . 61
5.4.1. NET 1 . 61
5.4.2. Reserved TCP/UDP Ports . 62

5.5. Controller Area Network Interface . 62
5.5.1. CAN . 62

5.6. Integrated I/O . 63
5.6.1. Digital Inputs . 63
5.6.2. Fast Inputs . 64

5.6.2.1. High-Speed Counters . 65
5.6.2.1.1. Counter Interrupts . 69

5.6.2.2. External Interruption . 71
5.6.3. Fast Outputs . 71

5.6.3.1. VFO/PWM . 73
5.6.3.2. PTO . 75

5.6.4. Analog Inputs . 80
5.6.5. RTD Inputs . 81
5.6.6. Analog Outputs . 82
5.6.7. I/O Mapping . 82

5.7. Management Tab Access . 83
5.7.1. System Section . 83

5.7.1.1. Clock Setting . 83
5.7.1.1.1. Computer Time (UTC) . 84
5.7.1.1.2. Custom Time (UTC) . 84

5.7.2. Network Section . 84
5.7.2.1. Network Section Configurations . 85

5.7.2.1.1. Defined by Application . 85
5.7.2.1.2. Defined by web page . 86

5.7.2.2. Network Sniffer . 87
5.8. USB Port . 88

5.8.1. Mass Storage Devices . 89
5.8.1.1. General Storage . 89
5.8.1.2. Not Loading the Application at Startup . 91
5.8.1.3. Transfering an Application from the USB device 91

5.8.2. USB to RS-232 Converters . 92
5.8.3. Modem Devices . 93
5.8.4. WiFi Adapters . 96
5.8.5. Ethernet Adapters . 98

5.9. Communication Protocols . 101
5.9.1. Protocol Behavior x CPU State . 103

IV

CONTENTS

5.9.2. Double Points . 103
5.9.3. CPU’s Events Queue . 103

5.9.3.1. Consumers . 104
5.9.3.2. Queue Functioning Principles . 105

5.9.3.2.1. Overflow Sign . 105
5.9.3.3. Producers . 105

5.9.4. Interception of Commands Coming from the Control Center 105
5.9.5. MODBUS RTU Master . 110

5.9.5.1. MODBUS Master Protocol Configuration by Symbolic Mapping 110
5.9.5.1.1. MODBUS Master Protocol General Parameters – Symbolic Mapping Con-

figuration . 110
5.9.5.1.2. Devices Configuration – Symbolic Mapping configuration 112
5.9.5.1.3. Mappings Configuration – Symbolic Mapping Settings 113
5.9.5.1.4. Requests Configuration – Symbolic Mapping Settings 114

5.9.6. MODBUS RTU Slave . 117
5.9.6.1. MODBUS Slave Protocol Configuration via Symbolic Mapping 118

5.9.6.1.1. MODBUS Slave Protocol General Parameters – Configuration via Sym-
bolic Mapping . 118

5.9.6.1.2. Configuration of the Relations – Symbolic Mapping Setting 120
5.9.7. MODBUS Ethernet . 121
5.9.8. MODBUS Ethernet Client . 123

5.9.8.1. MODBUS Ethernet Client Configuration via Symbolic Mapping 123
5.9.8.1.1. MODBUS Client Protocol General Parameters – Configuration via Sym-

bolic Mapping . 123
5.9.8.1.2. Device Configuration – Configuration via Symbolic Mapping 124
5.9.8.1.3. Mappings Configuration – Configuration via Symbolic Mapping 126
5.9.8.1.4. Requests Configuration – Configuration via Symbolic Mapping 127

5.9.8.2. MODBUS Client Relation Start in Acyclic Form 130
5.9.9. MODBUS Ethernet Server . 131

5.9.9.1. MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping 131
5.9.9.1.1. MODBUS Server Protocol General Parameters – Configuration via Sym-

bolic Mapping . 131
5.9.9.1.2. MODBUS Server Diagnostics – Configuration via Symbolic Mapping . . . 133
5.9.9.1.3. Mapping Configuration – Configuration via Symbolic Mapping 133

5.9.10. OPC DA Server . 134
5.9.10.1. Creating a Project for OPC DA Communication 136
5.9.10.2. Configuring a PLC on the OPC DA Server . 139

5.9.10.2.1. Importing a Project Configuration . 141
5.9.10.3. OPC DA Communication Status and Quality Variables 141
5.9.10.4. Limits of Communication with OPC DA Server 143
5.9.10.5. Accessing Data Through an OPC DA Client . 143

5.9.11. OPC UA Server . 145
5.9.11.1. Creating a Project for OPC UA Communication 146
5.9.11.2. Types of Supported Variables . 148
5.9.11.3. Limit Connected Clients on the OPC UA Server 148
5.9.11.4. Limit of Communication Variables on the OPC UA Server 148
5.9.11.5. Encryption Settings . 148
5.9.11.6. Main Communication Parameters Adjusted in an OPC UA Client 149

5.9.11.6.1. Endpoint URL . 149

V

CONTENTS

5.9.11.6.2. Publishing Interval (ms) e Sampling Interval (ms) 149
5.9.11.6.3. Lifetime Count e Keep-Alive Count . 150
5.9.11.6.4. Queue Size e Discard Oldest . 150
5.9.11.6.5. Filter Type e Deadband Type . 150
5.9.11.6.6. PublishingEnabled, MaxNotificationsPerPublish e Priority 150

5.9.11.7. Accessing Data Through an OPC UA Client . 151
5.9.12. EtherCAT Master . 152

5.9.12.1. Installing and inserting EtherCAT Devices . 152
5.9.12.1.1. EtherCAT - Scan Devices . 153

5.9.12.2. EtherCAT Master Settings . 154
5.9.12.2.1. EtherCAT Master - General . 154
5.9.12.2.2. EtherCAT Master - Sync Unit Assignment 155
5.9.12.2.3. EtherCAT Master - Overview . 155
5.9.12.2.4. EtherCAT Master - I/O Mapping . 155
5.9.12.2.5. EtherCAT Master - IEC Objects . 156
5.9.12.2.6. EtherCAT Master - Status / Information Tabs 156

5.9.12.3. EtherCAT Slave Configuration . 156
5.9.12.3.1. EtherCAT Slave - General . 156
5.9.12.3.2. EtherCAT Slave - Process Data . 159
5.9.12.3.3. EtherCAT Slave - Edit PDO List . 161
5.9.12.3.4. EtherCAT Slave - Startup Parameters . 161
5.9.12.3.5. EtherCAT Slave - I/O Mapping . 161
5.9.12.3.6. EtherCAT Slave - Status and Information 162

5.9.13. EtherNet/IP . 162
5.9.13.1. EtherNet/IP . 163
5.9.13.2. EtherNet/IP Scanner Configuration . 165

5.9.13.2.1. General . 165
5.9.13.2.2. Connections . 166
5.9.13.2.3. Assemblies . 168
5.9.13.2.4. EtherNet/IP I/O Mapping . 169

5.9.13.3. EtherNet/IP Adapter Configuration . 169
5.9.13.3.1. General . 169
5.9.13.3.2. EtherNet/IP Adapter: I/O Mapping . 170

5.9.13.4. EtherNet/IP Module Configuration . 170
5.9.13.4.1. Assemblies . 171
5.9.13.4.2. EtherNet/IP Module: I/O Mapping . 171

5.9.14. IEC 60870-5-104 Server . 171
5.9.14.1. Type of data . 171
5.9.14.2. Double Points . 173

5.9.14.2.1. Digital Input Double Points . 173
5.9.14.2.2. Digital Output Double Points . 175

5.9.14.3. General Parameters . 180
5.9.14.4. Data Mapping . 180
5.9.14.5. Link Layer . 182
5.9.14.6. Application Layer . 184
5.9.14.7. Server Diagnostic . 186
5.9.14.8. Commands Qualifier . 187

5.9.15. CANopen Manager . 188

VI

CONTENTS

5.9.15.1. Installing and inserting CANopen Devices . 188
5.9.15.2. CANopen Manager Configuration . 189
5.9.15.3. CANopen Slave Configuration . 190

5.10. Remote I/O Mode . 191
5.10.1. CANopen Slave . 192
5.10.2. PROFINET Controller . 197

5.11. Communication Performance . 197
5.11.1. MODBUS Server . 197

5.11.1.1. CPU’s Local Interfaces . 198
5.11.2. OPC UA Server . 198

5.12. User Web Pages . 198
5.13. SNMP . 199

5.13.1. Introduction . 199
5.13.2. SNMP in Nexto Xpress Controllers . 199
5.13.3. Configuration SNMP . 200
5.13.4. User and SNMP Communities . 201

5.14. RTC Clock . 202
5.14.1. Function Blocks for RTC Reading and Writing . 202

5.14.1.1. Function Blocks for RTC Reading . 202
5.14.1.1.1. GetDateAndTime . 203
5.14.1.1.2. GetTimeZone . 203
5.14.1.1.3. GetDayOfWeek . 204

5.14.1.2. RTC Writing Functions . 205
5.14.1.2.1. SetDateAndTime . 205
5.14.1.2.2. SetTimeZone . 206

5.14.2. RTC Data Structures . 207
5.14.2.1. EXTENDED_DATE_AND_TIME . 208
5.14.2.2. DAYS_OF_WEEK . 208
5.14.2.3. RTC_STATUS . 208
5.14.2.4. TIMEZONESETTINGS . 209

5.15. User Files Memory . 209
5.16. Function Blocks and Functions . 210

5.16.1. Special Function Blocks for Serial Interfaces . 210
5.16.1.1. SERIAL_CFG . 215
5.16.1.2. SERIAL_GET_CFG . 217
5.16.1.3. SERIAL_GET_CTRL . 219
5.16.1.4. SERIAL_GET_RX_QUEUE_STATUS . 220
5.16.1.5. SERIAL_PURGE_RX_QUEUE . 222
5.16.1.6. SERIAL_RX . 223
5.16.1.7. SERIAL_RX_EXTENDED . 225
5.16.1.8. SERIAL_SET_CTRL . 227
5.16.1.9. SERIAL_TX . 229

5.16.2. Inputs and Outputs Update . 231
5.16.2.1. RefreshIntegratedIoInputs . 231
5.16.2.2. RefreshIntegratedIoOutputs . 232

5.16.3. Timer Retain . 232
5.16.3.1. TOF_RET . 232
5.16.3.2. TON_RET . 233

VII

CONTENTS

5.16.3.3. TP_RET . 235
5.17. FTP Server . 236

5.17.1. Configuration . 236
5.17.1.1. General Configuration . 237

5.17.1.1.1. Enable Server . 237
5.17.1.1.2. Enable Security . 237
5.17.1.1.3. Read-only Access . 237
5.17.1.1.4. Idle Timeout (Seconds) . 238

5.17.1.2. User Configuration . 238
5.17.1.2.1. Username . 238
5.17.1.2.2. Password . 238

5.17.1.3. Status . 238
5.17.1.3.1. Current State . 238
5.17.1.3.2. Connected Clients . 238

5.18. Firewall . 238
5.18.1. Introduction . 238
5.18.2. Configuration . 239
5.18.3. General Configuration . 239
5.18.4. User Rules . 241

5.19. OpenVPN . 242
5.19.1. Introduction . 242
5.19.2. Import Configuration . 243
5.19.3. OpenVPN Configuration . 244

5.19.3.1. Common Configurations . 245
5.19.3.1.1. Mode . 245
5.19.3.1.2. Protocol . 245
5.19.3.1.3. Logs level . 245
5.19.3.1.4. Keep Alive Ping . 245
5.19.3.1.5. Keep Alive Timeout . 245
5.19.3.1.6. Security Files . 245
5.19.3.1.7. TA Key . 246

5.19.3.2. Exclusive Server Configurations . 246
5.19.3.2.1. Network Address . 246
5.19.3.2.2. Communication between Clients . 246
5.19.3.2.3. Maximum Connected Clients . 246
5.19.3.2.4. Private Networks . 246

5.19.3.3. Exclusive Client Configurations . 248
5.19.3.3.1. Remote IP . 248

5.19.3.4. Application Settings . 248
5.19.4. Security Files . 248
5.19.5. Status Table . 249
5.19.6. Download Section . 251
5.19.7. Architectures Configuration . 251

5.19.7.1. Host-to-Host Configuration . 251
5.19.7.2. Host-to-Site Configuration . 252
5.19.7.3. Site-to-Site Configuration . 253

5.20. Motion Control (Softmotion) . 253
6. Maintenance . 254

VIII

CONTENTS

6.1. Diagnostics . 254
6.1.1. Diagnostics via LED . 254
6.1.2. Diagnostics via System Web Page . 255
6.1.3. Diagnostics via Variables . 255

6.1.3.1. Summarized Diagnostics . 255
6.1.3.2. Detailed Diagnostics . 256

6.1.4. Diagnostics via Function Blocks . 267
6.1.4.1. GetTaskInfo . 267

6.2. Preventive Maintenance . 268
7. Appendixes . 269

7.1. TLS Key and Certificate Management . 269
7.1.1. Easy-RSA Certificate Generation . 269
7.1.2. OpenSSL Certificate Generation . 273
7.1.3. TA Key Generation by OpenVPN . 275

IX

1. INTRODUCTION

1. Introduction
Nexto Xpress is a powerful compact Programmable Logic Controller (PLC) part of Nexto Series family of controllers and

I/O modules. Nexto Xpress delivers high-speed processing power in a compact design with embedded I/O. There are several
options to choose from, allowing the best solution for entry-level applications.

This product portfolio targets small control systems, offering models containing from a few digital inputs and outputs up
to options with 43 I/O points concentrated in a single controller, including analog inputs and outputs with temperature support
(RTD sensors). In case of additional I/O needs, the system can be easily expanded using expansion modules (see section
Related Products). Additionally, the number of I/O points can be further expanded through remote (distributed) I/O devices
communicating via protocols such as CANopen, EtherNet/IP, PROFINET and MODBUS.

Nexto Xpress is suitable for small applications and remote distributed I/O. It may be applied in verticals such as infrastruc-
ture, building automation, water, wastewater, food, textiles, factory automation, machines and several other OEM solutions,
including motion control applications. The inclusion of an integrated firewall provides enhanced protection and security for
the systems, safeguarding data integrity and mitigating potential cyber threats. Additionally, the controller is an ideal solution
for complementing big applications along with Nexto Series portfolio, extending the range of applications using the same
technology and engineering environment. This is a great advantage for OEMs and systems integrators with needs of small to
large applications.

Figure 1: Nexto Xpress

1

1. INTRODUCTION

1.1. Documents Related to this Manual
This manual will focus on information that is specific for the controllers of Nexto Xpress family. For other functionalities

that are identical along all controllers of Nexto Series, this manual will just point to the corresponding manual of Nexto Series
that contains the information. These related manuals are described on the following table, and are available in its last version
on the site http://www.altus.com.br/site_en/.

Code Description Language
CE114000 Nexto Series – Technical Characteristics English
CT114000 Série Nexto – Características Técnicas Portuguese
MU216600 Nexto Xpress User Manual English
MU216000 Manual de Utilização Nexto Xpress Portuguese
MU214600 Nexto Series User Manual English
MU214000 Manual de Utilização Série Nexto Portuguese
MU299609 MasterTool IEC XE User Manual English
MU299048 Manual de Utilização MasterTool IEC XE Portuguese
MP399609 MasterTool IEC XE Programming Manual English
MP399048 Manual de Programação MasterTool IEC XE Portuguese
MU214606 MQTT User Manual English
MU214609 OPC UA Server for Altus Controllers User Manual English
MU214610 PID - Advanced Control Functions User Manual English
MU214621 Nexto Series PROFINET Manual English
MU223603 IEC 60870-5-104 Server Device Profile Document English

NAP151 Utilização do Tunneller OPC Portuguese

Table 1: Documents Related

1.2. Visual Inspection
Before resuming the installation process, it is advised to carefully visually inspect the equipment, verifying the existence

of transport damage. Verify if all parts requested are in perfect shape. In case of damages, inform the transport company or
Altus distributor closest to you.

CAUTION

Before taking the modules off the case, it is important to discharge any possible static energy
accumulated in the body. For that, touch (with bare hands) on any metallic grounded surface
before handling the modules. Such procedure guaranties that the module static energy limits
are not exceeded.

It’s important to register each received equipment serial number, as well as software revisions, in case they exist. This
information is necessary, in case the Altus Technical Support is contacted.

2

http://www.altus.com.br/site_en/

1. INTRODUCTION

1.3. Technical Support
For Altus Technical Support contact in São Leopoldo, RS, call +55 51 3589-9500. For further information regarding the

Altus Technical Support existent on other places, see https://www.altus.com.br/en/ or send an email to altus@altus.com.br.
If the equipment is already installed, you must have the following information at the moment of support requesting:

The model from the used equipments and the installed system configuration
The product serial number
The equipment revision and the executive software version, written on the tag fixed on the product’s side
CPU operation mode information, acquired through MasterTool IEC XE
The application software content, acquired through MasterTool IEC XE
Used programmer version

1.4. Warning Messages Used in this Manual
In this manual, the warning messages will be presented in the following formats and meanings:

DANGER

Reports potential hazard that, if not detected, may be harmful to people, materials, environ-
ment and production.

CAUTION

Reports configuration, application or installation details that must be taken into consideration
to avoid any instance that may cause system failure and consequent impact.

ATTENTION

Identifies configuration, application and installation details aimed at achieving maximum
operational performance of the system.

3

https://www.altus.com.br/en/
altus@altus.com.br

2. TECHNICAL DESCRIPTION

2. Technical Description
This chapter presents all technical features of Nexto Xpress controllers.

2.1. Panels and Connections
The following figure shows the XP325 front panel:

Figure 2: XP325 front panel

The front panel contains the identification of the I/O and communication interfaces available on Nexto Xpress controllers.
The digital I/O interfaces have one LED for each point to indicate the logic state, while the communication interfaces have one
LED each to indicate activity. The availability of these interfaces on each model is described on next section.

Additionally, on the right side of front panel there are 2 LEDs used to indicate power and diagnostics. The following table
shows the LEDs description. For further information regarding the LEDs status and meaning, see Maintenance chapter.

LED Description
PWR Status of internal power supply
DG Diagnostic indication

Ixx.x Status of digital inputs
Qxx.x Status of digital outputs
D+/- Status of RS-485 interface (blinks on activity)
H/L Status of CAN interface (blinks on activity)
USB Status of USB port (turns on when device is mounted)
ETH Status of Ethernet interface (turns on when connected, blinks on activity)

Table 2: LEDs Description

4

2. TECHNICAL DESCRIPTION

2.2. Product Features
2.2.1. General Features

XP300 XP315 XP325 XP340 XP350 XP351
Digital Inputs 12
Fast Inputs 4
Digital Outputs 12
Fast Outputs 4
Max. number of high-speed counters 1
Max. number of external interruptions 2
Max. number of PTO outputs 2
Max number of VFO/PWM outputs 4

5 to 10 5 to 10 5 to 10 5 to 10 5 to 10V/I analog inputs (AI) -
See Notes See Notes See Notes See Notes See Notes

RTD analog inputs (AI) - 2 2 2 2 2
V/I analog outputs (AO) - - 4 4 - -
Ethernet TCP / IP interface 1
RS-485 Serial interface 1
CAN Interface 1
USB Host port 1
User web pages (Webvisu) No No No Yes No No
Motion control (Softmotion) No No No No Yes, Yes,

without CNC with CNC
Remote I/O Mode Yes Yes Yes Yes No No
FTP Yes
Firewall Yes
VPN Yes
Maximum number of tasks 16

Programming languages

Structured Text (ST)
Ladder Diagram (LD)
Sequential Function Chart (SFC)
Function Block Diagram (FBD)
Continuous Function Chart (CFC)

Online changes Yes
Watchdog Yes

Real-time clock (RTC)
Yes
Resolution of 1 ms, max. variance of 3 seconds per day,
retention time of 14 days.

Status and diagnostic indication LEDs, web pages and CPU’s internal memory
Isolation

Protective earth to all 1,500 Vdc / 1 minute (1,000 Vac / 1 minute)
Logic/RS-485/CAN/USB to all 1,500 Vdc / 1 minute (1,000 Vac / 1 minute)
Ethernet to all 1,500 Vdc / 1 minute (1,000 Vac / 1 minute)
Power Supply/Analog I/O to all 1,500 Vdc / 1 minute (1,000 Vac / 1 minute)
Digital Inputs to all 1,500 Vdc / 1 minute (1,000 Vac / 1 minute)
Digital Inputs Group I0x to I1x 1,500 Vdc / 1 minute (1,000 Vac / 1 minute)
Digital Outputs to all 1,500 Vdc / 1 minute (1,000 Vac / 1 minute)

Maximum power dissipation 5 W

5

2. TECHNICAL DESCRIPTION

XP300 XP315 XP325 XP340 XP350 XP351

Maximum wire size 0.5 mm2 (20 AWG) with ferrule
1.5 mm2 (16 AWG) without ferrule

Minimum wire temperature rating 75 ◦C
Wire material Copper only
IP level IP 20
Conformal coating Yes
Operating temperature -20 to 60 ◦C
Operating temperature (UL/cUL) 0 to 60 ◦C
Storage temperature -25 to 75 ◦C
Operating and storage relative humidity 5% to 96%, non-condensing

Vibration resistance (IEC 60068-2-6, si-
nus)

7 mm from 5 to 8.4 Hz
2 G from 8.4 to 500 Hz
10 sweeps each axis, 1 octave per minute

Shock resistance (IEC 60068-2-27, half-
sine) 15 G for 11 ms, 6 shocks in each of 3 axis

Product dimensions (W x H x D) 215.5 x 98.8 x 34.0 mm
Package dimensions (W x H x D) 270.0 x 102.0 x 40.0 mm
Weight 370 g
Weight with package 430 g

Table 3: General Features

Notes:
V/I analog inputs (AI): By default, each analog input is composed by 2 terminals (AIx.V and AIx.I), and when selecting

one mode (V, for example), the other pin (I, for example) becomes unused. With the function AnalogInputProbe, provided by
the LibIntegratedIoExt library, it is possible to use these free inputs, allowing to have up to 10 analog inputs (5 on terminals
AIx.V and other 5 on terminals AIx.I), with the same technical characteristics informed on this document. For additional
information, please consult the Technical Support.

Motion control: PLCopen Motion Control Part 1 function block support for single-axis control, multi-axis synchroniza-
tion, electronic gearing (CAME), special editor for motion planning (CAM), and others.

Maximum number of tasks: This value represents the maximum total of user and system tasks. The detailed description
of possible user tasks can be found on Project Profiles section of User Manual. Before MasterTool IEC XE v3.30, this value
was defined as “5”.

Isolation: The Logic term refers to the internal interfaces such as processors, memories and USB, serial and CAN com-
munication interfaces.

Conformal coating: Conformal coating protects the electronic components inside the product from moisture, dust and
other harsh elements to electronic circuits.

Operating temperature: The minimum operating temperature is 0°C for units with product revision inferior to AS/AS/AW/AE
for XP300/XP315/XP325/XP340 respectively.

6

2. TECHNICAL DESCRIPTION

2.2.2. Standards and Certifications

Standards and Certifications

61131-2: Industrial-process measurement and control -
Programmable controllers - Part 2: Equipment requirements

and testsIEC

61131-3: Programmable controllers - Part 3: Programming
languages

DNV Type Approval – DNV-CG-0339 (TAA000034G)
(Except the XP350 and XP351)

2014/30/EU (EMC)
2014/35/EU (LVD)

2011/65/EU and 2015/863/EU (ROHS)

S.I. 2016 No. 1091 (EMC)
S.I. 2016 No. 1101 (Safety)
S.I. 2012 No. 3032 (ROHS)

Ordinary Locations: cULus LISTED, E473496

Hazardous Locations: cULus LISTED, E536282
Class I Division II, Groups A, B, C, D

TR 004/2011 (LVD)
CU TR 020/2011 (EMC)

Table 4: Standards and Certifications

7

2. TECHNICAL DESCRIPTION

2.2.3. Memory

XP300 XP315 XP325 XP340 XP350 XP351
Addressable input variables memory (%I) 2 KB
Addressable output variables memory (%Q) 2 KB
Direct representation variable memory (%M) 1 KB
Symbolic variable memory 2 MB 2 MB 2 MB 6 MB 6 MB 6 MB
Program memory 3 MB 3 MB 3 MB 8 MB 8 MB 8 MB
Total memory

Program memory (max. defined per
model) +

Source code memory (backup) +
64 Mbytes

Webvisu files memory
Retain/persistent memory 7,5 KB

(user configurable) (Expandable up to 64 KB using Recipes stored on User Files
memory (see article on knowledge base))

User files memory (backup) 8 MB

Table 5: Memory

Note:
Program memory: From version 3.40 of MasterTool IEC XE, the memory has been increased from 2MB to 3MB in the

XP300, XP315, and XP325 models, and from 6MB to 8MB in the XP340 model.
Persistent and Retain symbolic variables memory: Area where the retentive/persistent symbolic variables are allocated.

The controller performs retentive/persistent cyclic saves every 5 seconds.

ATTENTION

The declaration and use of symbolic persistent variables should be performed exclusively
through the Persistent Vars object, which may be included in the project through the tree
view in Application -> Add Object -> Persistent Variables. It should not be used the VAR
PERSISTENT expression in the declaration of field variables of POUs.

Retentive/persistent symbolic memory variables full behaviour can be found in the following table where "X" means that
memory data is safe under the presented scenario while "-" means data loss.

Command Symbolic Variable Retain variable Persistent variable
Power cycle - X X
Reset warm - X X
Reset cold - - X
Reset Origin - - -
Download - - X
Online change X X X
Clean All - - X
Reset Process (IEC 60870-5-104) - X X

Table 6: Post-command Variable Behavior

8

2. TECHNICAL DESCRIPTION

2.2.4. Protocols

Interface
Open Protocol COM 1 / USB
MODBUS RTU Master COM 1
MODBUS RTU Slave COM 1
MODBUS TCP Client NET 1
MODBUS TCP Server NET 1
MODBUS RTU over TCP Client NET 1
MODBUS RTU over TCP Server NET 1
CANopen Master CAN
CANopen Slave CAN

(except XP350 and XP351)
CAN low level CAN
SAE J-1939 CAN
OPC DA Server NET 1 / USB
OPC UA Server NET 1 / USB
EtherCAT Master NET 1
SNMP Agent NET 1 / USB
IEC 60870-5-104 Server NET 1

(only XP340)
EtherNet/IP Scanner NET 1
EtherNet/IP Adapter NET 1
MQTT Client NET 1 / USB
SNTP Client (for clock synchronism) NET 1 / USB
PROFINET Controller NET 1
PROFINET Device -
OpenVPN Client NET 1 / USB
OpenVPN Server NET 1 / USB
FTP Server NET 1 / USB

Table 7: Protocols

Notes:
USB: Need to use Serial Converter, WiFi, Modem or Ethernet Adapter.
PROFINET Controller: Enabled for use on a simple (not ring) network with up to 8 devices. For larger applications,

consult technical support.

9

2. TECHNICAL DESCRIPTION

2.2.5. RS-485

RS-485
Connector 3-pin terminal block
Physical interface RS-485
Communication direction RS-485: half duplex
RS-485 max. transceivers 32
Termination Yes (Configurable)
Baud rate 2400, 4800, 9600, 19200, 38400, 57600, 115200 bps

Table 8: RS-485 Serial Interface Features

2.2.6. CAN

CAN
Connector 3-pin terminal block
Physical interface CAN bus
Supported standards CAN 2.0A 2.0B (11-bit and 29-bit identifiers)
Max. number of nodes 64
Termination Yes (Configurable)
Baud rate 10, 20, 50, 100, 125, 250, 500, 800, 1000 kbit/s

Table 9: CAN Interface Features

2.2.7. USB

USB
Connector USB A Female
Physical interface USB V2.0

Baud rate 1.5 Mbps (Low Speed), 12 Mbps (Full Speed) and 480 Mbps
(High Speed)

Maximum current 500 mA
Mass storage
USB RS-232 Serial Converter

Supported devices USB 3G/4G Modem
USB WiFi Adapter
USB Ethernet Adapter

Table 10: USB Interface Features

Notes:
USB RS-232 Serial Converter: See the list of supported devices on respective section USB to RS-232 Converters.
USB 3G/4G Modem: See the list of supported devices on respective section Modem Devices.
USB WiFi Adapter: See the list of supported devices on respective section WiFi Adapters.
USB Ethernet Adapter: See the list of supported devices on respective section Ethernet Adapters.

10

2. TECHNICAL DESCRIPTION

ATTENTION:

The CPU supports the use of only one USB device at a time. Devices such as USB HUBs,
for example, are not supported.

2.2.8. Ethernet

Ethernet
Connector Shielded female RJ45
Auto crossover Yes
Maximum cable length 100 m
Cable type UTP or ScTP, category 5
Baud rate 10/100 Mbps
Physical layer 10/100 BASE-TX
Data link layer LLC
Network layer IP
Transport layer TCP (Transmission Control Protocol)

UDP (User Datagram Protocol)
Diagnostics LED (Link/Activity)

Table 11: Ethernet Interface Features

2.2.9. Power Supply

Power Supply
Nominal input voltage 24 Vdc
Input voltage 19.2 to 30 Vdc
Maximum input current (in-rush) 50 A / 300 us
Maximum input current 300 mA

Table 12: Power Supply Features

2.2.10. Digital Inputs

Digital Inputs
Input type Optoisolated sink type 1

Two isolated groups of 8 inputs each
24 Vdc

Input voltage 15 to 30 Vdc for logic level 1
0 to 5 Vdc for logic level 0

Input impedance 4.95 kΩ
Maximum input current 6.2 mA @ 30 Vdc
Input state indication Yes
Response time 0.1 ms
Input filter Disabled or 2 ms to 255 ms – by software

Table 13: Digital Inputs Features

11

2. TECHNICAL DESCRIPTION

Note:
Input filter: The filter sampling is performed on MainTask (or Refresh function), then it’s recommended to use multiple

values of the task interval.

2.2.11. Fast Inputs

Fast Inputs

Number of fast inputs 4 (can be used as high-speed counter, External interrupt
or standard digital input)

Max. number of high-speed
counters 1

Max. number of external inter-
rupts 2

Connector configuration I00, I01, I02 and I03
24 Vdc

Input voltage 15 to 30 Vdc for logic level 1
0 to 5 Vdc for logic level 0

Input impedance 1.85 kΩ
Input maximum current 16.2 mA @ 30 Vdc

1-input modes
Standard digital input
External interrupt

Configuration mode 2-input modes
Up/Down (A count, B direction) with zero (uses I00,

I01, I02)
Quadrature 2x (uses I00, I01)
Quadrature 2x with zero (uses I00, I01, I02)
Quadrature 4x (uses I00, I01)
Quadrature 4x with zero (uses I00, I01, I02)

Counting direction control Hardware only

Counting input detection edge Rising edge, active at logic level 1 (except for quadrature
4x, where it counts on both edges)

Data format Signed 32-bit integer
Operation limit From - 2,147,483,648 to 2,147,483,647
Maximum input frequency 100 kHz
Minimum pulse width

@ 24 Vdc 2 µs

Table 14: Fast Inputs Features

12

2. TECHNICAL DESCRIPTION

2.2.12. Digital Outputs

Digital Outputs
Output type Optoisolated transistor source type
Maximum output current 1.5 A per output

12 A total
Leakage current 35 µA
On state resistance 105 mΩ

External power supply 19.2 to 30 Vdc
Switching time 20 µs - off-to-on transition @ 24 Vdc

500 µs - on-to-off transition @ 24 Vdc
Maximum switching frequency 250 Hz
Configurable parameters Yes
Output state indication Yes
Output protections Yes, protection against surge voltages

Table 15: Digital Outputs Features

Note:
Switching time: The required time to turn off one specific output depends on the load.

2.2.13. Fast Outputs

Fast Outputs
Number of outputs 4 (can be used as VFO/PWM, PTO or standard digital output)
Max. number of PTO outputs 2

Max number of VFO/PWM out-
puts

4 when using no PTO
2 when using 1 PTO
0 when using 2 PTO

Connector configuration Q14, Q15, Q16 and Q17

Maximum current 0 to 500 Hz: 1.5A per output / 6.0A total
500 to 200 KHz: 0.5A per output / 2.0A total

Output type Transistor source
Pulse generation maximum fre-
quency 200 kHz @ 60 mA

Minimum pulse width MINIMUM LOAD MINIMUM PULSE TIME
@ 24 Vdc 400 Ω 320 ns

State indication Through static reserved operands
Protections TVS diode at all transistor outputs
Operation voltage 19.2 to 30 Vdc
Output impedance 700 mΩ

Output modes

Standard digital output
VFO/PWM
PTO (Q14 and Q16 only. Adjacent output is forced to stan-
dard digital output)

13

2. TECHNICAL DESCRIPTION

Fast Outputs
PTO VFO/PWM

Functions executed by software Writing of number of pulses
to be generated

Writing of the frequency
value to be generated (1 Hz
to 200 kHz).

Writing of acceleration
and deceleration number of
pulses

Writing of outputs duty cy-
cle (1% to 100%)

Start/end outputs operation Start/end of outputs opera-
tions

Fast outputs diagnostics Fast outputs diagnostics.
Fast outputs current state
monitoring

Table 16: Fast Outputs Features

2.2.14. Analog Inputs

Analog Inputs

Input type Voltage or current input, single ended, individually config-
ured

Data format 16 bits in two’s complement, justified to the left
Converter resolution 12 bits monotonicity guaranteed, no missing codes
Conversion time 400 µs (all V/I and RTD channels enabled)
Input state indication Yes
Module protections Yes, protection against surge voltages and polarity inversion

Table 17: Analog Inputs Features

Voltage Input Mode
Input ranges Range Engineering Scale Resolution

0 to 10 Vdc 0 to 30,000 2.5 mV
Precision ±0.3 % of full scale @ 25 ◦C

± 0.010 % of full scale / ◦C
Over scale 3 % of full scale
Maximum input voltage 12 Vdc
Input impedance 21 kΩ

Configurable parameters Signal type per input
Filters

Low pass filter time constant 100 ms, 1 s, 10 s or disabled

Table 18: Voltage Input Mode Features

14

2. TECHNICAL DESCRIPTION

Current Input Mode
Input ranges Range Engineering Scale Resolution

0 to 20 mA 0 to 30,000 5.12 µA
4 to 20 mA 0 to 30,000 5.12 µA

Precision ±0.3 % of full scale @ 25 ◦C
± 0.015 % of full scale / ◦C

Over scale 3 % of full scale
Maximum input current 30 mA
Input impedance 119 Ω

Configurable parameters
Signal type per input
Filters
Open Loop Value

Low pass filter time constant 100 ms, 1 s, 10 s or disabled

Table 19: Current Input Mode Features

Note:
Input ranges: When configured as 4 to 20 mA, input signals lower than 4 mA will result in negative values (-7,500 for

0 mA). Starting from MasterTool IEC XE version 3.16, a new parameter called Open Loop Value was included to select the
behavior in this situation. The default value is Disabled (which provides a linear reading as described above), having also the
option to provide a fixed reading equal to lower and upper limits ("0" or "30000").

RTD Input
Precision ±0.5 % of full scale @ 25 ◦C
Supported scales Pt100, Pt1000, 0 to 400 Ω, 0 to 4000 Ω

Excitation current 1 mA

Resistance range (scale) 0 to 400 Ω (used for PT100)
0 to 4000 Ω (used for PT1000)

Over Scale 5 % of full scale
Configurable parameters Signal type per input

Filters
Low pass filter time constant 100 ms, 1 s, 10 s or disabled
Maximum sensor cable impedance (per
wire) 5 Ω

Table 20: RTD Input Features

2.2.15. Analog Outputs

Analog Outputs
Output type Voltage or current output, individually configured
Data format 16 bits in two’s complement, justified to the left
Converter resolution 12 bits monotonicity guaranteed, no missing codes
Update time 450 µs (all outputs enabled)
Output state indication Yes
Module protections Yes, protection against surge voltages and polarity inversion

Table 21: Analog Outputs Features

15

2. TECHNICAL DESCRIPTION

Voltage Output Mode
Output ranges Range Engineering Scale Resolution

0 to 10 V 0 to 30,000 2.5 mV
Precision ±0.3 % of full scale @ 25 ◦C

± 0.025 % of full scale / ◦C
Stabilization time 4 ms
Maximum output value + 10.3 Vdc
Load impedance > 1 kΩ
Configurable parameters Signal type per output

Table 22: Voltage Output Mode Features

Current Output Mode
Output ranges Range Engineering Scale Resolution

0 to 20 mA 0 to 30,000 5.18 µA
4 to 20 mA 0 to 30,000 5.18 µA

Precision ±0.3 % of full scale @ 25 ◦C
± 0.020 % of full scale / ◦C

Stabilization time 4 ms
Maximum output value + 20.6 mA
Load impedance < 600 Ω

Configurable parameters Signal type per output

Table 23: Current Output Mode Features

Note:
Output ranges: When configured as 4 to 20 mA, the output can be set to values lower than 4 mA by assigning negative

values to the output variable (-7,500 for 0 mA).

2.3. Compatibility with Other Products
To develop an application for Nexto Xpress controllers, it is necessary to check the version of MasterTool IEC XE. The

following table shows the minimum version required (where the controllers were introduced) and the respective firmware
version at that time:

Controller model MasterTool IEC XE Firmware version
XP300, XP315 and XP325 3.10 or above 1.7.0.0 or above

XP340 3.18 or above 1.8.0.0 or above
XP350 3.50 or above 1.12.5.0 or above
XP351 3.52 or above 1.12.29.0 or above

Table 24: Compatibility with other products

Additionally, along the development roadmap of MasterTool IEC XE some features may be included (like special Func-
tionBlocks, etc...), which can introduce a requirement of minimum firmware version. During the download of the application,
MasterTool IEC XE checks the firmware version installed on the controller and, if it does not meets the minimum requirement,
will show a message requesting to update. The latest firmware version can be downloaded from Altus website, and it is fully
compatible with previous applications.

16

2. TECHNICAL DESCRIPTION

2.4. Performance
The performance of Nexto Xpress controller relies on:

Application Interval Time
User Application Time
Operational System Time
Number of integrated I/O channels enabled

2.4.1. Interval Time

The application and I/O update are executed on a cyclic (periodic) task called MainTask. The interval time of this task can
be configured from 1 to 100 ms. The time spent for these operations is called Cycle Time, and should always be smaller than
the interval, because the free time is used for communication and other low priority tasks of the controller.

Additionally, the integrated I/O can be updated asynchronously at any point of user application code using the refresh
functions available on section Inputs and Outputs Update.

2.4.2. Application Times

The execution time of the application (cycle time) depends on the following variables:

Integrated inputs read time
Task execution time
Integrated outputs write time

The time required for reading and writing the integrated I/O is dependent of the number and the type of the I/O channels
enabled. For digital I/O, all channels are always enabled and the time added to MainTask is not relevant. For analog I/O, the
time added to MainTask is determined by the conversion time (for analog inputs) and by the update time (for analog outputs),
both described on General Features table.

2.4.3. Time for Instructions Execution

The below table presents the necessary execution time for different instructions in Nexto Xpress CPUs.

Instruction Language Variables Instruction Times (µs)
1000 Contacts LD BOOL 10

ST INT 180
REAL 40

LD INT 180
1000 Divisions

REAL 40

ST INT 13
REAL 13

LD INT 13
1000 Multiplications

REAL 13

ST INT 13
REAL 13

LD INT 13
1000 Sums

REAL 13

Table 25: Instruction Times

2.4.4. Initialization Times

The initialization time of Nexto Xpress controllers is approximately 40 s.

17

2. TECHNICAL DESCRIPTION

2.5. Physical Dimensions
Dimensions in mm.

Figure 3: XP3xx Physical Dimensions

18

2. TECHNICAL DESCRIPTION

2.6. Purchase Data
2.6.1. Integrant Items

The product package has the following items:

Compact PLC module
Connectors

2.6.2. Product Code

The following code should be used to purchase the product:

Code Description

XP300 High-Speed Compact PLC with 16 DI, 16 DO Transistor, 1 Ethernet, 1
RS-485 Serial and CANopen Master

XP315 High-Speed Compact PLC with 16 DI, 16 DO Transistor, 5 V/I AI, 2
RTD AI (3 wire), 1 Ethernet, 1 RS-485 Serial and CANopen Master

XP325
High-Speed Compact PLC with 16 DI, 16 DO Transistor, 5 V/I AI, 2
RTD AI (3 wire), 4 AO, 1 Ethernet, 1 RS-485 Serial and CANopen
Master

XP340
High-Speed Compact PLC with 16 DI, 16 DO Transistor, 5 V/I AI, 2
RTD AI (3 wire), 4 AO, 1 Ethernet, 1 RS-485 Serial, CANopen Master
and user web pages support

XP350
High-Speed Compact PLC with Standard Softmotion, 16 DI, 16 DO
transistor, 5 V/I AI, 2 RTD AI (3 wire), 1 Ethernet port, 1 RS-485 serial
and CANopen Master

XP351
High-Speed Compact PLC with Advanced Softmotion (CNC), 16 DI,
16 DO transistor, 5 V/I AI, 2 RTD AI (3 wire), 1 Ethernet port, 1 RS-
485 serial and CANopen Master

Table 26: Nexto Xpress Controller Models

19

2. TECHNICAL DESCRIPTION

2.7. Related Products
The following products must be purchased separately when necessary:

Code Description
MT8500 MasterTool IEC XE
NX9202 RJ45-RJ45 2 m Cable
NX9205 RJ45-RJ45 5 m Cable
NX9210 RJ45-RJ45 10 m Cable
AL-2600 RS-485 network branch and terminator
AL-2306 RS-485 cable for MODBUS or CAN network
AL-1766 CFDB9-Terminal Block Cable

FBS-USB-232M9 Universal USB-Serial converter cable / 2m

XP900 TP-Link nano Wireless 150 Mbps USB Adapter TL-
WN725N (only available in Brazil)

AMJG0808 Simple cable RJ45-RJ45 2 m
XP101 Nexto Xpress Expansion, 16 DI 24 Vdc
XP106 Nexto Xpress Expansion, 8 DI 24 Vdc and 6 DO Relay
XP201 Nexto Xpress Expansion, 16 DO Transistor

TLE3-21100 Gateway IoT Industrial

Table 27: Related Products

Notes:
MT8500: MasterTool IEC XE is available in four different versions: LITE, BASIC, PROFESSIONAL and ADVANCED.

For more details, please check MasterTool IEC XE User Manual - MU299609.
NX92xx: Cable for programming the CPUs of the Nexto Series and Ethernet point-to-point with another device with

Ethernet interface communication.
AL-2600: This module is used for branch and termination of RS-485 networks. For each network node, an AL-2600 is

required. The AL-2600 that are at the ends of network must be configured with termination, except when there is a device with
active internal termination, the rest must be configured without termination.

AL-2306: Two shielded twisted pairs cable without connectors, used for networks based on RS-485 or CAN.
AL-1766: Cable with a female DB9 connector and terminals for communication between HMI P2 and Nexto Xpress/NX3003

controllers.
FBS-USB-232M9: Cable for use as a USB-Serial converter on the USB interface of Xpress controllers.
AMJG0808: Cable for programming the CPUs.
XP101 / XP106 / XP201: CANopen expansion modules.

20

3. INSTALLATION

3. Installation
This chapter presents the necessary proceedings for the physical installation of Nexto Xpress controllers, as well as the

care that should be taken with other installation within the panel where the controller is been installed.

CAUTION

If the equipment is used in a manner not specified by in this manual, the protection provided
by the equipment may be impaired.

ATTENTION

For marine applications, additionally to the standard instructions described on this chapter,
the following installation requirements shall be met:

The product shall be installed in a metallic cabinet.
The 24 Vdc power supply port shall be equipped with a filter TDK-Lambda model
RSMN-2003 or equivalent.
The cables of all ports (power, I/O and communication) shall be equipped with a pair
of low/high frequency ferrites Wurth Electronics 74272221/74271221 or equivalent.

ATTENTION

Additionally to the standard instructions described on this chapter, the following installation
requirements shall be met:

These devices are open-type devices that are to be installed in an enclosure suitable
for the environment and accessible only with use of a tool or key.
This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or
non-hazardous locations only.

DANGER

EXPLOSION HAZARD - Do not disconnect equipment unless power has been removed or
the area is known to be non-hazardous.

3.1. Mechanical Installation
Nexto Xpress controllers were designed to be installed in a standard DIN rail. Additionally, the user shall provide a suitable

enclosure that meets the system protection and safety requirements. The next sections shows the procedures for installing and
removing the controller.

CAUTION

For achieving the temperature specification of the controller, the installation must provide
a free space around the device as described on section Panel Design of Nexto Series User
Manual code MU214600.

21

3. INSTALLATION

3.1.1. Installing the controller

To install the controller on the DIN rail, first move the two locks on open position as indicated on the figure below:

Figure 4: Moving the two locks to open position

Next, place the controller on the DIN rail fitting the top side first and then the bottom side, as indicated on steps 1 and 2 of
the figure below:

Figure 5: Fixing the controller on the DIN rail

22

3. INSTALLATION

Finally, move the two locks to closed position to lock the controller on the DIN rail, as shown on the figure below:

Figure 6: Locking the controller on the DIN rail

3.1.2. Removing the controller

To remove the controller from the DIN rail, just move the two locks to the open position as shown on the figure below:

Figure 7: Unlocking the controller from the DIN rail

23

3. INSTALLATION

3.2. Electrical Installation
DANGER

When executing any installation in an electric panel, certify that the main energy supply is
OFF.

Figure 8: XP3xx Electrical Installation Diagram

24

3. INSTALLATION

Diagram Notes:

Typical connection of analog output on voltage/current mode.

Typical connection of digital output (source type).

External power supply to supply outputs Q00 to Q17, terminals Q + must be connected to +24 Vdc, and terminal
Q- must be connected to 0 Vdc.

Protective Earth terminals for power supply and communication ports. Both shall be externally connected to
ground.

Typical connection of RS-485 serial interface.

Typical connection of CAN interface.

Please check the technical characteristics table of USB port for the list of supported devices.

Use Ethernet cables informed on Related Products section.

Typical connection of digital input (sink type). C0 and C1 are the common points for the isolated groups I0x and
I1x respectively.

Typical connection of current analog input (field device with power supplied separately from analog signal).

Typical connection of current analog input (field device with power supplied with the analog signal, 2-wire).

Typical connection of voltage analog input.

Typical connection of RTD analog input (3-wire).

External power supply connection.

The signals from the analog inputs and outputs are not isolated from the main power supply, so the C2 and C3
signals cannot have a potential difference from the 0V of the main power supply. It’s recommended to connect
the 0V of the main power supply to the analog references C2 and C3 before connecting to the Xpress.

Protective conductor terminal.

25

3. INSTALLATION

3.3. Ethernet Network Connection
The ETH communication interface, identified as NET 1 on MasterTool IEC XE, allows the connection with an Ethernet

network and programming with this tool.
The Ethernet network connection uses twisted pair cables (10/100Base-TX) and the speed detection is automatically made

by the Nexto Xpress controller. This cable must have one of its endings connected to the interface that is likely to be used and
another one to the HUB, switch, microcomputer or other Ethernet network point.

3.3.1. IP Address

The Ethernet interface comes with the following default parameters configuration:

NET 1
IP Address 192.168.15.1
Subnet Mask 255.255.255.0
Gateway Address 192.168.15.253

Table 28: Default Parameters Configuration for Ethernet NET 1 Interface

First, the NET 1 interface must be connected to a PC network with the same subnet mask to communicate with MasterTool
IEC XE, where the network parameters can be modified. For further information regarding configuration and parameters
modifications, see Ethernet Interface chapter.

3.3.2. Gratuitous ARP

The NET1 Ethernet interface promptly sends ARP packets type in broadcast informing its IP and MAC address for all
devices connected to the network. These packets are sent during a new application download by the MasterTool IEC XE
software and in the controller startup when the application goes into Run mode.

Five ARP commands are triggered with a 200 ms initial interval, doubling the interval every new triggered command,
totalizing 3 s. Example: first trigger occurs at time 0, the second one at 200 ms and the third one at 600 ms and so on until the
fifth trigger at time 3 s.

3.3.3. Network Cable Installation

Nexto Xpress Ethernet port have standard pinout which are the same used in PCs. The connector type, cable type, physical
level, among other details, are defined in the General Features table. Below is the description of the RJ-45 female connector,
with the identification and description of the valid pinout for 10Base-T and 100Base-TX physical levels.

Figure 9: RJ45 Female Connector

26

3. INSTALLATION

Pin Signal Description
1 TXD + Data transmission, positive
2 TXD - Data transmission, negative
3 RXD + Data reception, positive
4 NU Not used
5 NU Not used
6 RXD - Data reception, negative
7 NU Not used
8 NU Not used

Table 29: RJ45 Female Connector Pin out

The interface can be connected in a communication network through a hub or switch, or straight from the communication
equipment. In this last case, due to Auto Crossover feature, there is no need for a cross-over network cable, the one used to
connect two PCs point to point via Ethernet port.

It is important to stress that it is understood by network cable a pair of RJ45 male connectors connected by a UTP or ScTP
cable, category 5 whether straight connecting or cross-over. It is used to communicate two devices through the Ethernet port.

These cables normally have a connection lock which guarantees a perfect connection between the interface female con-
nector and the cable male connector. At the installation moment, the male connector must be inserted in the module female
connector until a click is heard, assuring the lock action. To disconnect the cable from the module, the lock lever must be used
to unlock one from the other.

3.4. Serial RS-485 and CAN Network Connection
As illustrated on Electrical Installation diagram, both RS-485 and CAN interface uses two communication signals and a

ground. The recommended cable is AL-2306, using one of the two pairs and the shield. If the controller is placed at one of the
network ends, the internal termination shall be enabled (see Controller’s CPU and Serial Interface configuration sections for
CAN and RS-485 respectively).

27

4. INITIAL PROGRAMMING

4. Initial Programming
The main goal of this chapter is to help the programming and configuration of Nexto Xpress controllers, allowing the user

to take the first steps before starting to program the device.
Just like for the other devices of Nexto Series, the programming of Nexto Xpress controllers is made through the MasterTool

IEC XE (IDE) development interface, which offers a full IEC 61131-3 programming system with all languages defined by this
standard (ST, LD, SFC, FBD, etc...) plus an additional one, the CFC. These languages can be used simultaneously on the same
project, allowing the user to use the best features of each language, resulting in more efficient applications development, for
easy documentation and future maintenance.

For further information regarding programming, see User Manual MasterTool IEC XE - MU299609, Programming Manual
MasterTool IEC XE - MU399609 or IEC 61131-3 standard.

4.1. Memory Organization and Access
Different from other devices of Nexto Series (which are based on big-endian CPU), the Nexto Xpress controllers are based

on a ARM CPU, which uses the traditional little-endian memory organization (the same found on x86 and Intel processors).
On this type of memory organization, the least significant byte is stored first and will always be the smallest address (e.g.
%QB0 will always be less significant than %QB1, as shown on the table below, where, for CPUNEXTO string, the letter O is
byte 0 and the letter C is the byte 7).

Besides this, the memory access must be done carefully as the variables with higher number of bits (WORD, DWORD,
LONG), use as index the most significant byte, in other words, the %QD4 will always have as most significant byte the %QB4.
Therefore it will not be necessary to make calculus to discover which DWORD correspond to defined bytes. The Table 30,
shows little and big endian organization.

MSB← Little-endian→ LSB
BYTE %QB7 %QB6 %QB5 %QB4 %QB3 %QB2 %QB1 %QB0

C P U N E X T O
WORD %QW6 %QW4 %QW2 %QW0

CP UN EX TO
DWORD %QD4 %QD0

CPUN EXTO
LWORD %QL0

CPUNEXTO
MSB← Big-endian→ LSB

BYTE %QB0 %QB1 %QB2 %QB3 %QB4 %QB5 %QB6 %QB7
C P U N E X T O

WORD %QW0 %QW2 %QW4 %QW6
CP UN EX TO

DWORD %QD0 %QD4
CPUN EXTO

LWORD %QL0
CPUNEXTO

Table 30: Memory Organization and Access Example

28

4. INITIAL PROGRAMMING

SIGNIFICANCE OVERLAPPING

Bit Byte Word DWord LWord Byte Word DWord

%QX0.7

%QX0.6

%QX0.5

%QX0.4 %QB %QB00

%QX0.3 00

%QX0.2

%QX0.1

%QX0.0 %QW %QW

%QX1.7 00 00

%QX1.6

%QX1.5

%QX1.4 %QB %QB01

%QX1.3 01

MSB %QX1.2

%QX1.1

⇑ %QX1.0 %QD %QW %QD

%QX2.7 00 01 00

LSB %QX2.6

%QX2.5

%QX2.4 %QB %QB02

%QX2.3 02

%QX2.2

%QX2.1

%QX2.0 %QW %QW %QD

%QX3.7 02 02 01

%QX3.6

%QX3.5

%QX3.4 %QB %QB03

%QX3.3 03

%QX3.2

%QX3.1

%QX3.0 %QL %QW %QD

%QX4.7 00 03 02

%QX4.6

%QX4.5

%QX4.4 %QB %QB04

%QX4.3 04

%QX4.2

%QX4.1

%QX4.0 %QW %QW %QD

%QX5.7 04 04 03

%QX5.6

%QX5.5

%QX5.4 %QB %QB05

%QX5.3 05

MSB %QX5.2

%QX5.1

⇑ %QX5.0 %QD %QW %QD

%QX6.7 04 05 04

LSB %QX6.6

%QX6.5

%QX6.4 %QB %QB06

%QX6.3 06

%QX6.2

%QX6.1

%QX6.0 %QW %QW

%QX7.7 06 06

%QX7.6

%QX7.5

%QX7.4 %QB %QB07

%QX7.3 07

%QX7.2

%QX7.1

%QX7.0

Table 31: Memory Organization and Access

29

4. INITIAL PROGRAMMING

4.2. Project Profiles
A project profile in the MasterTool IEC XE consists in an application template combined with a group of verification rules

which guides the development of the application, reducing the programming complexity. For Nexto Xpress controllers, there
is only one project profile available: Machine Profile.

The Project Profile is selected on the project creation wizard. Each project profile defines a template of standard names for
the tasks and programs, which are pre-created according to the selected Project Profile. Also, during the project compilation
(generate code), MasterTool IEC XE verify all the rules defined by the selected profile.

The following sections details the characteristics of each profile. It is important to note that the programming tool allows
the profile change from an existent project (see project update section in the MasterTool IEC XE User Manual – MU299609),
but it’s up to the developer to make any necessary adjustments so that the project becomes compatible with the rules of the
new selected profile.

ATTENTION

Through the description of the Project profiles some tasks types are mentioned, which are
described in the section ‘Task Configuration’, of the MasterTool IEC XE User Manual –
MU299609.

4.2.1. Machine Profile

In the Machine Profile, by default, the application has a user task of the Cyclic type called MainTask. This task is respon-
sible for implementing a single Program type POU called MainPrg. This program can call other programming units of the
Program, Function or Function Block types, but any user code will run exclusively by MainTask task.

This profile is characterized by allowing shorter intervals in the MainTask, allowing faster execution of user code. This
profile may further include an interruption task, called TimeInterruptTask00, with a higher priority than the MainTask, and
hence, can interrupt its execution at any time.

Task POU Priority Type Interval Event
MainTask MainPrg 13 Cyclic 20 ms -

TimeInterruptTask00 TimeInterruptPrg00 01 Cyclic 4 ms -

Table 32: Machine Profile Tasks

Also, this profile supports the inclusion of additional tasks associated to counter and external interruptions, resulting in a
maximum of 5 tasks for user application.

ATTENTION

The suggested POU names associated with the tasks are not consisted. They can be changed,
as long as they are also changed in the tasks configurations.

30

4. INITIAL PROGRAMMING

4.3. CPU Configuration
The controller’s CPU configuration is located in the device tree, as shown on the figure below, and can be accessed by a

double-click on the corresponding object. In this tab it’s possible to configure watchdog behavior, clock synchronism, among
other parameters, as described on section Controller’s CPU.

Figure 10: CPU Configuration

Besides that, by double-clicking on controller’s NET 1 icon, it’s possible to configure the Ethernet interface that will be
used for communication between the controller and the software MasterTool IEC XE.

Figure 11: Configuring the Communication Port

The configuration defined on this tab will be applied to the device only when sending the application to the device (down-
load), which is described further on sections Finding the Device and Login.

Additionally, the device tree also offers the configuration of the integrated I/O available on Nexto Xpress controllers, as
shown on the figure below. In this tab it is possible to configure digital inputs filters, the mode of each analog input, among
other parameters.

31

4. INITIAL PROGRAMMING

Figure 12: Configuring the Integrated I/O

4.4. Libraries
There are several programming tool resources which are available through libraries. Therefore, these libraries must be

inserted in the project so its utilization becomes possible. The insertion procedure and more information about available
libraries may be found in the MasterTool Programming Manual – MP399609.

4.5. Inserting a Protocol Instance
The Nexto Xpress controllers, as described on General Features table, offers several communication protocols. Except for

the OPC communication, which have a different configuration procedure, the insertion of a protocol can be done by simply
right-clicking on the desired communication interface, selecting to add the device and finally performing the configuration as
shown in the Communication Protocols section. Below are presented some examples.

4.5.1. MODBUS Ethernet

The first step to configure the MODBUS Ethernet (Server in this example) is to include the instance in the desired NET (in
this case, NET 1, as the XP3xx has only one Ethernet interface). Click on the NET with the mouse right button and select Add
Device..., as shown on Figure 13:

32

4. INITIAL PROGRAMMING

Figure 13: Adding the Instance

After that, the list of protocols will appear on the screen. Simply select MODBUS Symbol Server as described on the
figure below:

Figure 14: Selecting the Protocol

33

4. INITIAL PROGRAMMING

4.6. Finding the Device
To establish the communication between the controller and MasterTool IEC XE, first it’s necessary to find and select the

desired device. The configuration of this communication is located on the object Device on device tree, on Communication
Settings tab. On this tab, after selecting the Gateway and clicking on button Scan network, the software MasterTool IEC XE
performs a search for devices and shows the controllers found on the network of the Ethernet interface of the station where the
tool is running.

Figure 15: Finding the Device

If there is no gateway previously configured, it can be included by the button Add gateway, using the default IP address
localhost to use the gateway resident on the station or changing the IP address to use the device internal gateway.

Next, the desired controller must be selected by clocking on Set active path clicked. This action selects the controller and
informs the configuration software which controller shall be used to communicate and send the project.

34

4. INITIAL PROGRAMMING

Figure 16: Selecting the controller

Additionally, the user can change the default name of the device that is displayed. For that, you must click the right mouse
button on the desired device and select Change Node Name. After a name change, the device will not return to the default
name under any circunstances.

In case the Ethernet configuration of the controller to be connected is in a different network from the Ethernet interface
of the station, the software MasterTool IEC XE will not be able to find the device. In this case, it’s recommended to use the
command Easy Connection located on Online menu.

Figure 17: Easy Connection

35

4. INITIAL PROGRAMMING

This command performs a MAC level communication with the device, allowing to permanently change the configuration of
the controller’s Ethernet interface, independently of the IP configuration of the station and from the one previously configured
on the device. So, with this command, it’s possible to change the device configuration to put it on the same network of
the Ethernet interface of the station where MasterTool IEC XE is running, allowing to find and select the device for the
communication. The complete description of Easy Connection command can be found on User Manual of MasterTool IEC
XE code MU299609.

4.7. Login
After compiling the application and fixing errors that might be found, it’s time to send the project to the controller. To do

this, simply click on Login command located on Online menu of MasterTool IEC XE as shown on the following figure. This
operation may take a few seconds, depending on the size of the generated file.

Figure 18: Sending the Project to the controller

After the command execution, some user interface messages may appear, which are presented due to differences between
an old project and the new project been sent, or simply because there was a variation in some variable.

If the Ethernet configuration of the project is different from the device, the communication may be interrupted at the end of
download process when the new configuration is applied on the device. So, the following warning message will be presented,
asking the user to proceed or not with this operation:

Figure 19: IP Configuration Warning

If there is no application on the controller, the following message will be presented.

Figure 20: No application on the device

36

4. INITIAL PROGRAMMING

If there is already an application on the controller, depending on the differences between the projects, the following options
will be presented:

Login with online change: execute the login and send the new project without stopping the current controller application
(see Run Mode item), updating the changes when a new cycle is executed
Login with download: execute the login and send the new project with the controller stopped (see Stop Mode item).
When the application is initiated, the update will have been done already
Login without any change: executes the login without sending the new project

Figure 21: New application download

ATTENTION

In the online changes is not permitted to associate symbolic variables mapping from a global
variable list (GVL) and use these variables in another global variable list (GVL).

If the new application contains changes on the configuration, the online change will not be possible. In this case, the
MasterTool IEC XE requests whether the login must be executed as download (stopping the application) or if the operation
must be canceled, as shown on the following figure.

PS.: The button Details... shows the changes made in the application.

Figure 22: Configuration change

Finally, at the end of this process the MasterTool IEC XE offers the option to transfer (download) the source code to the
internal memory of the device, as shown on the following figure:

Figure 23: Source code download

Transfering the source code is fundamental to ensure the future restoration of the project and to perform modifications on
the application that is loaded into the device.

37

4. INITIAL PROGRAMMING

4.8. Run Mode
Right after the project has been sent to the controller, the application will not be immediately executed (except for the case

of an online change). For that to happen, the command Start must be executed. This way, the user can control the execution of
the application sent to the controller, allowing to pre-configure initial values which will be used by the controller on the first
execution cycle.

To execute this command, simply go to the Debug menu and select the option Start, as shown on Figure 24.

Figure 24: Starting the Application

Figure 25 shows the application in execution. In case the POU tab is selected, the created variables are listed on a monitor-
ing window, in which the values can be visualized and forced by the user.

Figure 25: Program running

38

4. INITIAL PROGRAMMING

If the controller already have a boot application internally stored, it goes automatically to Run Mode when the device is
powered on, with no need for an online command through MasterTool IEC XE.

4.9. Stop Mode
To stop the execution of the application, the user must execute the Stop command, available at the menu Debug, as shown

on Figure 26.

Figure 26: Stopping the Application

In case the controller is initialized without the stored application, it automatically goes to Stop Mode, as it happens when a
software exception occurs.

4.10. Writing and Forcing Variables
After Logging into a PLC, the user can write or force values to a variable of the project.
The writing command (CTRL +F7) writes a value into a variable and this value could be overwritten by instructions

executed in the application.
Moreover, the forced writing command (F7) writes a value into a variable without allowing this value to be changed until

the forced variables be released.
It is important to highlight that, when using the MODBUS RTU Slave and the MODBUS Ethernet Server, and the Read-

only option from the configured relations is not selected, the forced writing command (F7) must be done over the available
variables in the monitoring window as the writing command (CTRL + F7) leaves the variables to be overwritten when new
readings are done.

ATTENTION

The variables forcing can be done only in Online mode.
Diagnostic variables cannot be forced, only written, because diagnostics are provided by the
controller and will be overwritten by it.

39

4. INITIAL PROGRAMMING

ATTENTION

When a controller is with forced variables and it is de-energized, the variables will lose the
forcing in the next initialization.
The limit of forcing for all models of Nexto controllers is 128 variables.

4.11. Logout
To finalize the online communication with the controller, the command Logout must be executed, located in the Online

menu, as shown on Figure 27.

Figure 27: Ending the online communication with the controller

4.12. Project Upload
Nexto Xpress controllers are capable to store the source code of the application on the internal memory of the device,

allowing future retrieval (upload) of the complete project and to modify the application.
To recover a project previously stored on the internal memory of the controller, the command located on File menu must

be executed as shown on the following figure.

40

4. INITIAL PROGRAMMING

Figure 28: Project Upload Option

Next, just select the desired controller and click OK as shown on Figure 29.

Figure 29: Selecting the controller

To ensure that the project loaded in the controller is identical and can be accessed in other workstations, consult the
chapter Projects Download/Login Method without Project Differences at the MasterTool IEC XE User Manual MT8500 -
MU299609.

41

4. INITIAL PROGRAMMING

ATTENTION

The memory size area to store a project in the Nexto Xpress controller is defined on General
Features table.

ATTENTION

The Upload recovers the last project stored in the controller as described in the previous
paragraphs. In case only the application was downloaded, without transfering its source
code, it will not be possible for it to be recovered by the Upload procedure.

4.13. CPU Operating States
4.13.1. Run

When the controller is in Run mode, all application tasks are executed.

4.13.2. Stop

When a CPU is in Stop mode, all application tasks are stopped. The variable values in the tasks are kept with the current
value and output points go to the safe state.

When a CPU goes to the Stop mode due to the download of an application, the variables in the application tasks will be
lost except the persistent variables type.

4.13.3. Breakpoint

When a debugging mark is reached in a task, it is interrupted. All the active tasks in the application will not be interrupted,
continuing their execution. With this feature, it’s possible to go through and investigate the program flow step by step in Online
mode according to the positions of the interruptions included through the editor.

For further information about the use of breakpoints, please consult the MasterTool IEC XE Utilization Manual - MU299609.

4.13.4. Exception

When a CPU is in Exception it indicates that some improper operation occurred in one of the application active tasks. The
task which caused the Exception will be suspended and the other tasks will pass for the Stop mode. It is only possible to take
off the tasks from this state and set them in execution again after a new CPU start condition. Therefore, only with a Reset
Warm, Reset Cold, Reset Origin or a CPU restart puts the application again in Run mode.

4.13.5. Reset Warm

This command puts the CPU in Stop mode and initializes all the application tasks variables, except the persistent and
retentive type variables. The variables initialized with a specific value will assume exactly this value, the other variables will
assume the standard initialization value (zero).

4.13.6. Reset Cold

This command puts the CPU in Stop mode and initializes all the application tasks variables, except the persistent type
variables. The variables initialized with a specific value will assume exactly this value, the other variables will assume the
standard initialization value (zero).

4.13.7. Reset Origin

This command removes all the application tasks variables, including the persistent type variables and deletes the CPU
application.

Notes:
Reset: When a Reset is executed, the breakpoints defined in the application are disabled.
Command: To execute the commands Reset Warm, Reset Cold or Reset Origin, is necessary to have MasterTool IEC XE

in Online mode with the controller.

42

4. INITIAL PROGRAMMING

4.13.8. Reset Process Command (IEC 60870-5-104)

This process reset command can be solicited by IEC 60870-5-104 clients. After answer the client, the CPU start a rebooting
process, as if being done an energizing cycle.

The standard IEC 60870-5-104 foresee a qualification value pass (0..255) with the process reset command, but this param-
eter is not considered by the CPU.

4.14. Programs (POUs) and Global Variable Lists (GVLs)
The project created by MasterTool IEC XE contains a set of program modules (POUs) and global variables lists that aims

to facilitate the programming and utilization of the controller. The following sections describes the main elements that are part
of this standard project structure.

4.14.1. MainPrg Program

The MainTask task is associated to one unique POU of program type, named MainPrg. The MainPrg program is created
automatically and cannot be edited by user.

The MainPrg program code is the following, in ST language:

(*Main POU associated with MainTask that calls StartPrg,
UserPrg/ActivePrg and NonSkippedPrg.
This POU is blocked to edit.*)

PROGRAM MainPrg
VAR

isFirstCycle : BOOL := TRUE;
END_VAR

IF isFirstCycle THEN
StartPrg();
isFirstCycle := FALSE;

ELSE
UserPrg();

END_IF;

MainPrg call other two POUs of program type, named StartPrg and UserPrg. While the UserPrg is always called, the
StartPrg is only called once in the PLC application start.

Differently from the MainPrg program, that must not be modified, the user can change the StartPrg and UserPrg programs.
Initially, when the project is created from the wizard, these two programs are created empty, but the user might insert code in
them.

4.14.2. StartPrg Program

In this POU the user might create logics, loops, start variables, etc. that will be executed only one time in the first PLC’s
cycle, before execute UserPrg POU by the first time. And not being called again during the project execution.

In case the user load a new application, or if the PLC gets powered off, as well as in Reset Origin, Reset Cold and Reset
Warm conditions, this POU is going to be executed again.

4.14.3. UserPrg Program

In this POU the user must create the main application, responsible by its own process control. This POU is called by the
main POU (MainPrg).

The user can also create additional POUs (programs, functions or function blocks), and called them or instance them inside
UserPrg POU, to ends of its program instruction. Also it is possible to call functions and instance function blocks defined in
libraries.

43

4. INITIAL PROGRAMMING

4.14.4. GVL IntegratedIO

The GVL IntegratedIO contains the variables correspondent to the physical input and output channels integrated into the
controller.

The following picture shows an example of the presentation of this GVL when in Online mode.

Figure 30: IntegratedIO GVL in Online Mode

4.14.5. GVL System_Diagnostics

The System_Diagnostics GVL contains the diagnostic variables of the controller’s CPU, communication and I/O interfaces.
This GVL isn’t editable and the variables are declared automatically with type specified by the device to which it belongs when
it is added to the project.

ATTENTION

In System_Diagnostics GVL, are also declared the diagnostic variables of the direct repre-
sentation MODBUS Client/Master requisitions.

The following picture shows an example of the presentation of this GVL when in Online mode.

44

4. INITIAL PROGRAMMING

Figure 31: System_Diagnostics GVL in Online Mode

4.14.6. GVL Disables

The Disables GVL contains the MODBUS Master/Client by symbolic mapping requisition disabling variables. It is not
mandatory, but it is recommended to use the automatic generation of these variables, which is done clicking in the button
Generate Disabling Variables in device requisition tab. These variables are declared as type BOOL and follow the following
structure:

Requisition disabling variables declaration:

[Device Name]_DISABLE_[Requisition Number] : BOOL;

Where:
Device name: Name that shows on TreeView to the MODBUS device.
Requisition Number: Requisition number that was declared on the MODBUS device requisition table following the

sequence from up to down, starting on 0001.
Example:
Device.Application.Disables

VAR_GLOBAL
MODBUS_Device_DISABLE_0001 : BOOL;
MODBUS_Device_DISABLE_0002 : BOOL;
MODBUS_Device_DISABLE_0003 : BOOL;
MODBUS_Device_1_DISABLE_0001 : BOOL;
MODBUS_Device_1_DISABLE_0002 : BOOL;

END_VAR

The automatic generation through button Generate Disabling Variables only create variables, and don’t remove automati-
cally. This way, in case any relation is removed, its respective disabling variable must be removed manually.

The Disables GVL is editable, therefore the requisition disabling variables can be created manually without need of fol-
lowing the model created by the automatic declaration and can be used both ways at same time, but must always be of BOOL
type. And it is need to take care to do not delete or change the automatic declared variables, cause them can being used for
some MODBUS device. If the variable be deleted or changed then an error is going to be generated while the project is being

45

4. INITIAL PROGRAMMING

compiled. To correct the automatically declared variable name, it must be followed the model exemplified above according to
the device and the requisition to which they belong.

The following picture shows an example of the presentation of this GVL when in Online mode. If the variable values are
TRUE it means that the requisition to which the variables belongs is disabled and the opposite is valid when the variable value
is FALSE.

Figure 32: Disable GVL in Online Mode

4.14.7. GVL Qualities

The Qualities GVL contains the quality variable of the internal variables MODBUS Master/Client of symbolic mapping .
It is not mandatory but is recommended to use these variables’ automatic generation, what is done clicking on button Generate
Quality Variables in the device mapping tab. These variables are declared as LibDataTypes.QUALITY type and follow the
following structure:

Quality mapping variable declaration:

[Device Name]_QUALITY_[Mapping Number]: LibDataTypes.QUALITY;

Where:
Device Name: Name that appear at the Tree View to the device.
Mapping Number: Number of the mapping that was declared on the device mapping table, following the up to down

sequence, starting with 0001.

ATTENTION

It is not possible to associate quality variables to the direct representation MODBUS Master/-
Client drivers’ mappings. Therefor it is recommended the use of symbolic mapping MOD-
BUS drivers.

Examples:
Device.Application.Qualities

VAR_GLOBAL
MODBUS_Device_QUALITY_0001: LibDataTypes.QUALITY;
MODBUS_Device_QUALITY_0002: LibDataTypes.QUALITY;
MODBUS_Device_QUALITY_0003: LibDataTypes.QUALITY;

END_VAR

The Quality GVL, is editable, therefore the mapping quality variables can be created manually without need to follow the
automatic declaration model, and can be used both ways at same time. But must always be of LibDataTypes.QUALITY type
and take care to don’t delete or change a variable automatically declared, because they might being used by some device. If the
variable be deleted or changed an error is going to be generated while the project is being compiled. To correct the automatically

46

4. INITIAL PROGRAMMING

declared variable name, it must be followed the model exemplified above according to the device and the requisition to which
they belong.

To the MODBUS communication devices the quality variables behave on the way showed at Table 41.

ATTENTION

If a symbolic mapping MODBUS Client/Master driver’s variable be mapped in Server IEC
60870-5-104 driver, it is necessary that the MODBUS mapping quality variables had been
created to generate valid quality events to such Server IEC 60870-5-104 points. Case op-
posite, aren’t going to be generated “bad” quality events to Server IEC60870-5-104 clients
in the situations that MODBUS Master/Client can’t communicate with its slaves/servers, by
example.

The following picture shows an example of the presentation of this GVL when in Online mode.

Figure 33: GVL Qualities in Online Mode

47

4. INITIAL PROGRAMMING

4.14.8. GVL ReqDiagnostics

In ReqDiagnostics GVL, are declared the requisition diagnostics variables of symbolic mapping MODBUS Master/Client.
It is nor mandatory, but recommended the use of these variables’ automatic generation, what is done by clicking in the button
Generate Diagnostic Variables in device requisitions tab. These variables declaration follow the following structure:

Requisition diagnostic variable declaration:

[Device Name]_REQDG_[Requisition Number]: [Variable Type];

Where:
Device Name: Name that appear at the TreeView to the device.
Mapping Number: Number of the mapping that was declared on the device mapping table, following the up to down

sequence, starting with 0001.
Variable Type: NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_RTU_MAPPING_1 to MODBUS Master and
NXMODBUS_DIAGNOSTIC_STRUCTS.
T_DIAG_MODBUS_ETH_MAPPING_1 to MODBUS Client.

ATTENTION

The requisition diagnostics variables of direct mapping MODBUS Master/Client are de-
clared at System_Diagnostics GVL.

Example:
Device.Application.ReqDiagnostics

VAR_GLOBAL
MODBUS_Device_REQDG_0001 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_RTU_MAPPING_1;
MODBUS_Device_REQDG_0002 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_RTU_MAPPING_1;
MODBUS_Device_REQDG_0003 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_RTU_MAPPING_1;
MODBUS_Device_1_REQDG_0001 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_ETH_MAPPING_1;
MODBUS_Device_1_REQDG_0002 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_ETH_MAPPING_1;
END_VAR

The ReqDiagnostics GVL is editable, therefore the requisitions diagnostic variables can be manually created without need
to follow the model created by the automatic declaration. Both ways can be used at same time, but the variables must always
be of type reffering to the device. And take care to don’t delete or change a variable automatically declared, because they might
being used by some device. If the variable be deleted or changed an error is going to be generated while the project is being
compiled. To correct the automatically declared variable name, it must be followed the model exemplified above according to
the device and the requisition to which they belong.

The following picture shows an example of the presentation of this GVL when in Online mode.

48

4. INITIAL PROGRAMMING

Figure 34: ReqDiagnostics GVL in Online Mode

49

5. CONFIGURATION

5. Configuration
The Nexto Xpress controllers are configured and programmed through the MasterTool IEC XE software. The configura-

tion defines the behavior and utilization modes for peripherals use and special features of the controller. The programming
represents the application developed by the user, also known as Application.

5.1. Device
5.1.1. User Management and Access Rights

It provides functions to define users accounts and to configure the access rights to the project and to the CPU. Using the
software MasterTool IEC XE, it’s possible to create and manage users and groups, setting, different access right levels to the
project.

Simultaneously, the Nexto CPUs have an user permissions management system that blocks or allows certain actions for
each user group in the CPU. For more information, consult the MasterTool IEC XE User Manual MT8500 – MU299609, in
the User Management and Access Rights section.

5.1.2. PLC Settings

On this tab of the generic device editor, you make the basic settings for the configuration of the PLC, for example the
handling of inputs and outputs and the bus cycle task.

Figure 35: PLC Settings

Parameter Description
Application for I/O handling Application that is responsible for the I/O handling.

Refresh I/Os in stop
TRUE: The values of the input and output channels are also
refreshed when the PLC is in STOP mode. If the watchdog de-
tects a malfunction, the outputs are set to the predefined default
values.
FALSE: The values of the input and output channels in STOP
mode are not refreshed.

50

5. CONFIGURATION

Parameter Description

Behavior of the outputs at
stop

Handling of the output channels when the controller enters
STOP mode:
Retain values: The current values are retained.
All outputs to default value: The default values resulting from
the I/O mapping are assigned.
Execute program: The handling of the output values is con-
trolled by a program contained in the project which is executed
in STOP mode. Enter the name of the program in the field on
the right.

Always update variables

Globally defines whether or not the I/O variables are updated in
the bus cycle task.
This setting is effective for the I/O variables of the slaves and
modules only if "deactivated" is defined in their update settings.
Deactivated (update only if used in a task): The I/O variables
are updated only if they are used in a task.
Enabled 1 (use bus cycle task if not used in any task): The
I/O variables in the bus cycle task are updated if they are not
used in any other task.
Enabled 2 (always in bus cycle task): All variables in each
cycle of the bus cycle task are updated, regardless of whether
they are used and whether they are mapped to an input or output
channel.

Bus cycle task
Task that controls the bus cycle. By default the task defined by
the device description is entered.
By default, the bus cycle setting of the superordinate bus de-
vice applies (use cycle settings of the superordinate bus). This
means that the device tree is searched upwards for the next valid
definition of the bus cycle task.

Force variables for the I/O
mapping

TRUE: When compiling the application, two global variables
are created for each I/O channel which is mapped to a variable
in the I/O Mapping dialog.

Activate diagnostics for de-
vices

TRUE: The CAA Device Diagnosis library is integrated in the
project. An implicit function block is generated for each device.
If there is already a function block for the device, then either an
extended function block is generated (example: EtherCAT) or
another function block instance is added. This then contains a
general implementation of the device diagnostics.

Display I/O warnings as er-
rors

Warnings concerning the I/O configuration are displayed as er-
rors.

Enable symbolic access for
I/Os

TRUE: It allows access to I/O points from the internal symbolic
name generated in the device declaration. The symbolic name
can be consulted in the Channel column on the Bus I/O Mapping
tab of each device.

Table 33: PLC Settings

ATTENTION

The Nexto (NX), Nexto Jet (NJ) and Xtorm (HX) products do not support the Enable sym-
bolic access for I/O parameter.

51

5. CONFIGURATION

5.2. Controller’s CPU
5.2.1. General Parameters

The parameters related to the controller’s CPU are located at project treeview on item XP3xx just below Configuration.
Each item must be properly verified for the correct project execution. These parameters are described below:

Figure 36: CPU configuration

Configuration Description Default Options
CPU Parameters

Start User Application Af-
ter a Watchdog Reset

When enabled starts the
user application after the
hardware watchdog reset or
through the Runtime restart,
but keeps the diagnostics in-
dication via LED DG and
via variables

Disabled Enabled
Disabled

Enable retain and persis-
tent variables in Function
Blocks

Configuration to allow the
use of retain and persis-
tent variables on Function
Blocks

Unmarked
Marked: allows the use of
retain and persistent vari-
ables on Function Blocks.

Unmarked: If this is done
with this option unmarked, it
may occur an exception er-
ror on startup.

Enable internal termna-
tion

When enabled use internal
termination on CAN inter-
face.

Unmarked
Marked: enabled internal
termination on CAN inter-
face.
Unmarked: disabled internal
termination on CAN inter-
face.

Table 34: CPU Configuration

52

5. CONFIGURATION

5.2.2. Time Synchronization

For the time synchronization, Nexto Xpress controllers use the SNTP (Simple Network Time Protocol) protocol or the
synchronism through IEC 60870-5-104.

To use the time sync protocols, the user must set the following parameters at Synchronism tab located at CPU configuration
on project treeview.

Figure 37: SNTP Configuration

Configuration Description Default Options

Time zone (hh:mm)
Time zone of the user loca-
tion. Hours and minutes can
be inserted.

-3:00 -12:59 to +13:59

SNTP Service Enables the SNTP service. Disabled Disabled or Enabled

Period for SNTP Synchro-
nization (x1 sec)

Time interval of the syn-
chronization requests (sec-
onds).

60 1 to 255

Minimum Error Before
Clock Update (x1 ms)

Offset value acceptable be-
tween the server and client
(milliseconds).

100 1 to 65519

IP Address of the First
SNTP Server

IP Address of the primary
SNTP server. 192.168.15.10 1.0.0.1 to 223.255.255.254.

IP Address of the Second
SNTP Server

IP Address of the secondary
SNTP server. 192.168.15.11 1.0.0.1 to 223.255.255.254.

Table 35: SNTP Configurations

Notes:
SNTP Server: It is possible to define a preferential address and another secondary one in order to access a SNTP server

and, therefore, to obtain a synchronism of time. If both fields are empty, the SNTP service will remain disabled.
Time zone: The time zone configuration is used to convert the local time into UTC and vice versa. While some sync

sources use the local time (IEC 60870-5-104 protocol, SetDateAndTime Function), others use the UTC time (SNTP). The UTC
time is usually used to stamp events (IEC 60870-5-104 protocol and MasterTool Device LOG), while the local time is used by
anothers CPU’s features (GetDateAndTime function).

It is allowed to enable more than one sync source on the project, however the device doesn’t supports the synchronism from
more than one sync source during operation. Therefore there is implicitly defined a priority mechanism. The synchronism
through SNTP is more prioritary than through IEC 60870-5-104 protocol. So, when both sources are enabled and SNTP server
is present, it is going to be responsible for the CPU’s clock sync, and any sync command from IEC 60870-5-104 is going to be
denied.

5.2.2.1. IEC 60870-5-104

In case the synchronism is through IEC 60870-5-104 protocol, the user must enable the time sync at the protocol con-
figuration screen to receive the clock synchronization. To set this option on the device, check the parameter Enable Time
Synchronization available at the Application Layer section.

53

5. CONFIGURATION

ATTENTION

If the PLC receives a time sync command from the control center, and this option is disabled,
an error answer will be returned to that command. But if this option is enabled then a success
message will be returned to the control center, even that the sync command be discarded for
there is another synchronism method active with higher priority.

This synchronism method should be used only as an auxiliary synchronism method, once the precision of the clock sync
process depends a lot on delays and traffic on the network, as well as the processor load on the CPU, as this mechanism is
treated by a low priority task.

5.2.2.2. SNTP

When enabled, the controller will behave as a SNTP client, which is, it will send requests of time synchronization to
a SNTP/NTP server which can be in the local net or in the internet. The SNTP client works with a 1 ms resolution. The
precision of the time sync through SNTP depends on the protocol configurations (minimum error to clock update) and the
features of the Ethernet network where it is, if both client and server are in the same network (local) or in different networks
(remote). Typically the precision is in tens of milliseconds order.

The controller sends the cyclic synchronization requests according to the time set in the SNTP Synchronization Period
field. In the first synchronization attempt, just after the service start up, the request is for the first server set in the first server IP
address. In case it does not respond, the requests are directed to the second server set in the second server IP address providing
a redundancy of SNTP servers. In case the second server does not respond either, the same process of synchronization attempt
is performed again but only after the Period of Synchronization having been passed. In other words, at every synchronization
period the controller tries to connect once in each server, it tries the second server in case the first one does not respond. The
waiting time for a response from the SNTP server is defined by default in 5 s and it cannot be modified.

If, after a synchronization, the difference between the current time of the controller and the one received by the server is
higher than the value set in the Minimum Error Before Clock Update parameter, the controller time is updated.

SNTP uses the time in the UTC (Universal Time Coordinated) format, so the Time zone parameter needs to be set correctly
so the time read by the SNTP will be properly converted to a local time.

The execution process of the SNTP client can be exemplified with the following steps:

1. Attempt of synchronization through the first server. In case the synchronization occurs successfully, the controller waits
the time for a new synchronization (Synchronization Period) and will synchronize again with this server, using it as a
primary server. In case of failure (the server does not respond in less than 5 s) step 2 is performed.

2. Attempt of synchronization through the second server. In case the synchronization occurs successfully, the controller
waits the time for a new synchronization (Synchronization Period) and will try to synchronize with this server using the
primary server. In case of failure (the server does not respond in less than 5 s) the time relative to the Synchronization
Period is waited and step 1 is performed again.

As the waiting time for the response of the SNTP server is 5 s, the user must pay attention to lower than 10 s values for the
Synchronization Period. In case the primary server does not respond, the time for the synchronization will be the minimum
of 5 s (waiting for the primary server response and the synchronization attempt with secondary server). In case neither the
primary server nor the secondary one responds, the synchronization time will be 10 s minimum (waiting for the two servers
response and the new connection with first server attempt).

ATTENTION

The SNTP Service depends on the user application only for its configuration. Therefore,
this service will be performed even when the controller is in STOP or BREAKPOINT modes
since there is an application in the controller with the SNTP client enabled and properly set.

5.2.2.3. Daylight Saving Time (DST)

The DST configuration must be done indirectly through the function SetTimeZone, which changes the time zone applied to
the RTC. In the beginning of the DST, it has to be used a function to increase the time zone in one hour. At the end of the DST,
it is used to decrease it in one hour.

For further information, see the section RTC Clock of this manual.

5.2.3. Internal Points

A communication point is storage on the CPU memory under form of two distinct variables. One represents the point’s
value (type BOOL, BYTE, WORD, etc. . .), while another, represents its quality (type QUALITY). Internal Points are those

54

5. CONFIGURATION

which the value and the quality are calculated internally by the user application, that is, they don’t have an external origin like
occur with points linked to IEDs (Communication drivers of type Master/Client).

This Internal Points configuration tab’s function is to relate the variable which represents a point’s value with the one
which represents its quality. It must be used to relate value and quality variables internally created on the PLC program (as in
a GVL), which ones typically will be afterlly mapped to a communication driver, of type Server, for communication with the
control center.

ATTENTION

If a value variable doesn’t own a related quality variable, it will be reported as default a
constant good quality (no significant indication) when the value variable is reported to a
client or control center.

In this way, this tab purpose isn’t to create or declare internal points. To do that, just declare value and/or quality variables
in a GVL and map it on the communication driver.

The internal points configuration, shown in the figure below, follow the parameters described in the table below. It’s
possible to configure up to 5120 entries on Internal Points table.

Figure 38: Internal Points Configuration Screen

Configuration Description Default Options

Variable Name Symbol variable which stor-
age the internal point value. -

Accept variables of type
BOOL, WORD, DWORD,
LWORD, INT, DINT, LINT,
UINT, UDINT, ULINT,
REAL, LREAL or DBP.
The variable can be simple,
array or array’s element and
can be part of a struct.

Quality
Symbol variable which stor-
age the internal point qual-
ity.

-

QUALITY type variables
(LibRtuStandard), which
can be simple, array or
array’s element and can be
part of a struct.

Table 36: Internal Points Configuration

The figure below show an example of two internal points configuration.

55

5. CONFIGURATION

Figure 39: Internal Points Configuration Example

5.2.3.1. Quality Conversions

The internal point’s quality is a trust level information about the value stored on that point. The quality may inform, for
example, that the value stored is out of range, or yet that it is valid, but low trusted.

The Standards like IEC 104 have their own formats to representation of point’s quality information. The Nexto Series,
by its turn, have its own quality format (but quite similar to IEC 61850) called Internal Quality. This format is defined by
type QUALITY (library LibRtuStandard) and it is used internally to quality storage, allowing to be done conversion between
protocols without information loss.

The following tables define the protocols own formats conversion to internal format. Case it is necessary to consult the
conversion between protocols, it is needed to analyze in two steps, looking each of the tables to internal format and after
correlating them.

5.2.3.1.1. Internal Quality

This is the QUALITY structure. The table below shows detailed each of its components.

Bit Name Type Description

0 FLAG_RESTART BOOL
The RESTART flag indicates that the data
haven’t been updated by the field since the
device’s reset.

1 FLAG_COMM_FAIL BOOL
Indicates there is a communication failure
on the way between the data origin device
and the reports device.

2 FLAG_REMOTE_SUBSTITUTED BOOL If TRUE the data values are overwritten in
the remote communication devices.

56

5. CONFIGURATION

Bit Name Type Description

3 FLAG_LOCAL_SUBSTITUTED BOOL

If TRUE the data value is overwritten by
the device which generated this flag. This
behavior might occur due to a working in
diagnostic or temporary due to human in-
tervention.

4 FLAG_FILTER BOOL

Flag used to signalize and prevent the event
communication channel overload. As os-
cillations (rapid changes) on the digital in-
puts.

5 FLAG_OVERFLOW BOOL

This flag should indicates a quality prob-
lem, that the value, of the attribute to which
the quality has been associated, is beyond
representation.

6 FLAG_REFERENCE_ERROR BOOL
This flag should identify that the value can-
not be correct due to out of calibration ref-
erence.

7 FLAG_INCONSISTENT BOOL This flag should identify that an evaluation
function has found an inconsistency.

8 FLAG_OUT_OF_RANGE BOOL

This flag should indicates a quality prob-
lem that the attribute to which the quality
has been associated is beyond the prede-
fined values capacity.

9 FLAG_INACCURATE BOOL
This flag should indicates that the value
doesn’t attend the declared precision of the
source.

10 FLAG_OLD_DATA BOOL
A value seems to be outdated. In case an
update doesn’t occur during a specific time
period.

11 FLAG_FAILURE BOOL
This flag should indicates that a watch
function detected an internal or external
failure.

12 FLAG_OPERATOR_BLOCKED BOOL Update blocked by operator.

13 FLAG_TEST BOOL

This must be an additional identifier which
can be used to classify a value being that
a test value which won’t be used to opera-
tional ends.

14-15 RESERVED - Reserved

16-17 VALIDITY QUALITY_VALIDITY

0 – Good (Trustfull value, means that
there is no abnormal conditions)
1 – Invalid (Value doesn’t match the IED’s
value)
2 – Reserved (Reserved)
3 – Questionable (Present value might be
not the same from the IED)

Table 37: QUALITY Structure

57

5. CONFIGURATION

5.2.3.1.2. IEC 60870-5-104 Conversion

The tables below presents the digital, analog, Step Position, Bitstring and counters internal point’s conversion to IEC
60870-5-104 of Nexto Series available to MT8500.

Internal Points -> IEC 60870-5-104 Digital
Internal Quality

Flags VALIDITY IEC 60870-5-104 Quality
FLAG_RESTART ANY NOT TOPICAL

FLAG_COMM_FAIL ANY NOT TOPICAL
FLAG_REMOTE_SUBSTITUTED ANY SUBSTITUTED
FLAG_LOCAL_SUBSTITUTED ANY SUBSTITUTED

FLAG_FILTER ANY -
FLAG_OVERFLOW ANY -

FLAG_REFERENCE_ERROR ANY -
FLAG_INCONSISTENT ANY -

FLAG_OUT_OF_RANGE ANY -
FLAG_INACCURATE ANY -

FLAG_OLD_DATA ANY NOT TOPICAL
FLAG_FAILURE ANY INVALID

FLAG_OPERATOR_BLOCKED ANY BLOCKED
FLAG_TEST ANY -

ANY VALIDITY_INVALID INVALID

Table 38: Digital Points Conversion Internal to IEC 60870-5-104

Internal Points -> IEC 60870-5-104 Analog, Step Position and Bitstring
Internal Quality

Flags VALIDITY IEC 60870-5-104 Quality
FLAG_RESTART ANY NOT TOPICAL

FLAG_COMM_FAIL ANY NOT TOPICAL
FLAG_REMOTE_SUBSTITUTED ANY SUBSTITUTED
FLAG_LOCAL_SUBSTITUTED ANY SUBSTITUTED

FLAG_FILTER ANY -
FLAG_OVERFLOW ANY OVERFLOW

FLAG_REFERENCE_ERROR ANY INVALID
FLAG_INCONSISTENT ANY INVALID

FLAG_OUT_OF_RANGE ANY OVERFLOW
FLAG_INACCURATE ANY INVALID

FLAG_OLD_DATA ANY NOT TOPICAL
FLAG_FAILURE ANY INVALID

FLAG_OPERATOR_BLOCKED ANY BLOCKED
FLAG_TEST ANY -

ANY VALIDITY_INVALID INVALID

Table 39: Analog, Step Position and Bitstring Points Conversion Internal to IEC 60870-5-104

58

5. CONFIGURATION

Internal Points -> IEC 60870-5-104 Counters
Internal Quality

Flags VALIDITY IEC 60870-5-104 Quality
FLAG_RESTART ANY -

FLAG_COMM_FAIL ANY -
FLAG_REMOTE_SUBSTITUTED ANY -
FLAG_LOCAL_SUBSTITUTED ANY -

FLAG_FILTER ANY -
FLAG_OVERFLOW ANY OVERFLOW

FLAG_REFERENCE_ERROR ANY -
FLAG_INCONSISTENT ANY -

FLAG_OUT_OF_RANGE ANY -
FLAG_INACCURATE ANY -

FLAG_OLD_DATA ANY -
FLAG_FAILURE ANY INVALID

FLAG_OPERATOR_BLOCKED ANY -
FLAG_TEST ANY -

ANY VALIDITY_INVALID INVALID

Table 40: Counters Conversion Internal to IEC 60870-5-104

5.2.3.1.3. MODBUS Internal Quality

As the MODBUS standard don’t specify quality types to each point, but for help on use of each point’s communication
diagnostic, MasterTool allows the quality variables mapping, through an internal own structure, to each MODBUS point. The
table below describes the quality types that each MODBUS point can assume.

Resulting Quality Resulting VALIDITY Description

FLAG_RESTART VALIDITY_INVALID Initial value. The point was
never updated.

- VALIDITY_GOOD Communication OK. The
point is updated.

FLAG_COMM_FAIL AND
FLAG_RESTART VALIDITY_INVALID Communication error. The

point never was updated.

FLAG_COMM_FAIL AND
FLAG_OLD_DATA VALIDITY_QUESTIONABLE

An error has occurred but
the point was updated and
now has an old value.

FLAG_FAILURE AND
FLAG_RESTART VALIDITY_INVALID

It has received an exception
response and the point kept
its initial value.

FLAG_FAILURE AND
FLAG_OLD_DATA VALIDITY_QUESTIONABLE

It has received an exception
response, but the point has a
valid old value.

FLAG_RESTART AND
FLAG_OLD_DATA VALIDITY_QUESTIONABLE Device stopped. The point

has an old value.

Table 41: MODBUS Quality

59

5. CONFIGURATION

5.3. Serial Interface
5.3.1. COM 1

The COM 1 interface is a RS-485 standard serial interface. It allows the point to point or network communication in the
open protocols MODBUS RTU slave or MODBUS RTU master.

When using the MODBUS master / slave protocol, some of these parameters (such as Serial Mode, Data Bits, RX Threshold
and Events Serial) are automatically adjusted by MasterTool tool for the correct operation of this protocol.

The parameters which must be configured for the proper functioning of the application are described below:

Configuration Description Default Options
Serial Type Serial channel configuration RS-485 RS-485

Baud Rate Serial communication port
speed configuration 115200 2400, 4800, 9600, 19200,

38400, 57600, 115200 bps
Serial port parity None Odd

Parity configuration Even
No parity

Data Bits
Sets the data bits quantity
in each serial communica-
tion character

8 6, 7 and 8

Stop Bits Sets the serial port stop bits 1 1 and 2

Serial Mode Sets the serial port operation
mode Normal Mode

- Extended Mode: Extended
operation mode which de-
livers information regarding
the received data frame (see
note on COM 1 section)
- Normal Mode: Serial com-
munication normal opera-
tion mode

Table 42: RS-485 Standard Serial Configurations

60

5. CONFIGURATION

5.3.2. Advanced Configurations

The advanced configurations section allows to configure additional parameters of the serial port as described below:

Configuration Description Default Options

UART RX Threshold

Bytes quantity which must
be received for a new UART
interruption to be gener-
ated. Low values make
the TIMESTAMP more pre-
cise when the EXTENDED
MODE is used and min-
imizes the overrun errors.
However, values too low
may cause several interrup-
tions delaying the CPU.

8 1, 4, 8 and 14

RS-485 Termination

Enables the internal stan-
dard RS-485 termination.
Must be enabled only if the
controller is physically posi-
tioned at one of the extremi-
ties of the RS-485 network.

Enabled Disabled or Enabled

Table 43: RS-485 Standard Serial Advanced Configurations

5.4. Ethernet Interface
The interface is composed by a RJ45 communication connector 10/100Base-TX standard. It allows the point to point or

network communication with several protocols, for example: MODBUS, OPC UA, etc...
The parameters which must be configured for the proper functioning of the application are described below:

5.4.1. NET 1

Configuration Description Default Options

Obtain an IP address auto-
matically

Enables the DHCP Client
functionality on the device
for automatic IP assignment.

Unmarked Marked or Unmarked

IP Address IP address of the controller
in the Ethernet bus. 192.168.15.1 1.0.0.1 to 223.255.255.254

Sub network Mask Subnet mask of the con-
troller in the Ethernet bus. 255.255.255.0 128.0.0.0 to 255.255.255.252

Gateway Address Controller Gateway address
in the Ethernet bus. 192.168.15.253 0.0.0.0 to 223.255.255.254

Table 44: NET 1 Configuration

61

5. CONFIGURATION

5.4.2. Reserved TCP/UDP Ports

The following TCP/UDP ports of the Ethernet interfaces, both local and remote, are used by CPU services (depending on
availability according to table Protocols) and, therefore, are reserved and must not be used by the user.

Service TCP UDP
System Web Page 80 -

SNTP - 123
SNMP - 161

MODBUS TCP 502* -
Mastertool 1217* 1740:1743
SQL Server 1433 -

MQTT 1883* / 8883* -
EtherNet/IP 44818 2222

IEC 60870-5-104 2404* -
DNP3 20000* / 20005* -

OPC UA 4840 -
WEBVISU 8080 -

CODESYS ARTI 11740 -
PROFINET - 34964

Portainer Docker 9000 -

Table 45: Reserved TCP/UDP ports

* Default port, but user changeable.

5.5. Controller Area Network Interface
5.5.1. CAN

The CAN interface allows point to point or network communication with other devices that have this interface using
CANopen application protocol.

The parameters of CAN interface which must be configured for the proper functioning of the application are described
below:

Configuration Description Default Options
Network CAN interface ID number 0 0 (fixed)

Baudrate
CAN Bus baudrate (kbit/s).
The other devices must to
use the same baudrate.

250 10, 20, 50, 100, 125, 250,
500, 800, 1000

Table 46: CAN Configuration

The parameters related to CANopen protocol are described on Communication Protocols section.

62

5. CONFIGURATION

5.6. Integrated I/O
Nexto Xpress controllers have integrated I/O points, which allows it to interface with external devices like sensors, actua-

tors, step motors, encoders, etc...
There are two objects on project treeview related to Integrated I/O, as shown on the figure below:

Figure 40: Integrated I/O objects on project treeview

One of these objects is the GVL IntegratedIO, which is created automatically by MasterTool IEC XE and contains a list of
global symbolic variables that are directly mapped to the onboard inputs and outputs.

The other object is the connector Integrated I/O, which contains the configuration for each type of I/O point. These
configurations will be detailed on next sections.

5.6.1. Digital Inputs

The parameters related to the Digital Inputs are located on the screen below (example from XP325), for both standard and
fast inputs (when configured as standard digital inputs):

Figure 41: Digital Inputs Parameters

63

5. CONFIGURATION

The table below shows the possible configuration values:

Configuration Description Default Options

Filter time
Minimum time that an input
must remain in a given state
to confirm the state change

20 ms 2 to 255 ms

Filter Enable/Disable filter for
each input Disabled Enabled or Disabled

Table 47: Digital Inputs Parameters

Note:
Input Filter Time Constant: The filter sampling is performed on MainTask (or Refresh function), then it’s recommended

to use multiple values of the task interval.

5.6.2. Fast Inputs

The fast inputs are special input signals that can be used for special high-speed functions. These special physical inputs
can be assigned to two types of logical elements: high-speed counters and external interruption. Each of these logical elements
consumes a certain amount of fast inputs signals. For the high-speed counters unit, it depends on the selected mode (Up/Down,
Quadrature, etc. . .), while each external interruption uses one fast input signal. The number of physical fast inputs, as well as
the maximum number of high-speed counter and external interruption logical elements assignable for these inputs is described
on Technical Description section.

The following table shows how each high-speed counter unit is assigned to the fast inputs signals:

High-Speed Counter Counter Mode Fast Inputs
I00 I01 I02 I03

Up/Down (A count, B direction) with zero B Z A -
Quadrature 2X A B - -

Counter 0 Quadrature 2X with zero A B Z -
Quadrature 4X A B - -

Quadrature 4X with zero A B Z -

Table 48: High-Speed Counters and Fast Inputs allocation

For each configuration described above, the remaining fast input signals (not used by the high-speed counter units) can be
used as external interruption, respecting the maximum number of this kind of logical element specified on Technical Descrip-
tion section.

The configuration of high-speed counters and interruptions is located on the following screen:

Figure 42: Fast Inputs settings

When selecting the function of a fast input, the following inputs are automatically assigned (locked for edition) according
to the mode of the high-speed counter unit.

The table below shows the possible configuration values for each fast input:

64

5. CONFIGURATION

Configuration Description Default Options
Digital Input
Counter 0 (Input B): Up/Down (A count, B direction)
with zero

Fast Fast Input I00 Digital Input Counter 0 (Input A): Quadrature 2X
Input I00 configuration Counter 0 (Input A): Quadrature 2X with zero

Counter 0 (Input A): Quadrature 4X
Counter 0 (Input A): Quadrature 4X with zero

Fast Fast Input I01 Digital Input Digital Input

Input I01 configuration Obs: This field will be set automatically when Fast Input
I00 is configured as Up/Down or Quadrature Counter.
Digital Input

Fast Fast Input I02 Digital Input Interruption (Rising Edge)
Input I02 configuration

Obs: This field will be set automatically when Fast In-
put I00 is configured as Up/Down or Quadrature Counter
with zero.

Fast Fast Input I03 Digital Input Digital Input
Input I03 configuration Interruption (Rising Edge)

Table 49: Fast Inputs Parameters

Even if a fast input is configured as a counter or interruption, it’s digital value can still be read through Integrate-
dIo.DigitalInputs variable. The next subsections give more details about the Fast Inputs configuration and programming.

5.6.2.1. High-Speed Counters

The high-speed counter units have multiple operating modes. The following table describes the details of each of these
modes:

Counter Mode Counting waveforms

Up/Down (A count, B di-
rection) with zero

Quadrature 2X

65

5. CONFIGURATION

Counter Mode Counting waveforms

Quadrature 2X with zero

Quadrature 4X

Quadrature 4X with zero

Table 50: High-speed counter modes

The overall behavior is the same for all counters: when counting UP and the maximum positive value is reached, the next
value will be the minimum negative value. The same thing happens for the oposite direction, so when counting DOWN and
the minimum negative value is reached, the next value will be the maximum positive value.

The user program can access the high-speed counters through the FastInputs symbolic structure, which is automatically
created on IntegratedIo GVL. For each high-speed counter unit, there are 3 main areas as shown on the following figure:

Figure 43: Counter structure

The table below describes the counter variables structure:

66

5. CONFIGURATION

Variable Description Type Allowed Values

Mode Configured counter
mode (read only)

ENUM_COUNTER
_MODE DISABLED

UP_DOWN_A_COUNT_B
_DIR_WITH_ZERO
QUADRATURE_2X
QUADRATURE_2X _WITH_ZERO
QUADRATURE_4X
QUADRATURE_4X _WITH_ZERO

Counter Counter value DINT -2147483648 to 2147483647
Preset Preset value DINT -2147483648 to 2147483647
Hold Hold value DINT -2147483648 to 2147483647

Comparer0 Lower value of
counter comparison DINT -2147483648 to 2147483647

Comparer1 Higher value of
counter comparison DINT -2147483648 to 2147483647

Command Counter commands
structure

T_COUNTER _COM-
MAND -

Status Counter status struc-
ture T_COUNTER _STATUS -

Table 51: Counter structure variables

The command and status are structures of bits that allow the user program to control the counter operation. The following
table describes the counter command structure.

Variable Description Type Allowed Values

Stop Stop the counter. The counter re-
mains stopped while this bit is set BIT FALSE or TRUE

Reset Reset the counter. The counter re-
mains zeroed while this bit is set BIT FALSE or TRUE

Load
Load the preset value to the counter
value. This operation is performed
on rising edge of this bit

BIT FALSE or TRUE

Sample
Sample the counter storing its value
in hold. This operation is per-
formed on rising edge of this bit

BIT FALSE or TRUE

Table 52: Counter command structure

The following table describes the counter status structure.

Variable Description Type Allowed Values
Enabled Counter is enabled BIT FALSE or TRUE

Direction Counter direction (TRUE = Up,
FALSE = Down) BIT FALSE or TRUE

EQComparer0 Counter value is equal to Com-
parer0 BIT FALSE or TRUE

LTComparer0 Counter value is less than Com-
parer0 BIT FALSE or TRUE

67

5. CONFIGURATION

Variable Description Type Allowed Values

GTComparer0 Counter value is greater than Com-
parer0 BIT FALSE or TRUE

EQComparer1 Counter value is equal to Com-
parer1 BIT FALSE or TRUE

LTComparer1 Counter value is less than Com-
parer1 BIT FALSE or TRUE

GTComparer1 Counter value is greater than Com-
parer1 BIT FALSE or TRUE

Table 53: Counter status structure

Additionally to the IntegratedIo global variables, there is a function block from LibIntegratedIo library which allows to
instantiate high-speed counter in POUs written in graphical languages (e.g Ladder Logic Diagram). This function block is,
actually, a wrapper to the structured variables described before. The figure below shows the function block instantiated in a
Ladder program.

Figure 44: LibIntegratedIo.COUNTER function block

The table below describes the inputs and outputs variables of the function block.

Variable Description Type Allowed Values

ENABLE Enable the function block
execution BOOL FALSE or TRUE

COUNTER_VAR Counter variable REFERENCE TO
T_COUNTER FastInputs.Counter0

STOP Stop the counter BOOL FALSE or TRUE
RESET Reset the counter BOOL FALSE or TRUE

LOAD Load the preset value to the
counter value BOOL FALSE or TRUE

SAMPLE Sample counter storing its
value in hold BOOL FALSE or TRUE

PRESET Preset value DINT -2147483648 to 2147483647

COMPARER_0 Lower value of counter com-
parison DINT -2147483648 to 2147483647

68

5. CONFIGURATION

Variable Description Type Allowed Values

COMPARER_1 Higher value of counter
comparison DINT -2147483648 to 2147483647

ENABLED Counter is enabled BOOL FALSE or TRUE

DIRECTION Counter direction (TRUE =
Up, FALSE = Down) BOOL FALSE or TRUE

DISABLED
UP_DOWN_A_- COUNT_
B_DIR_- WITH_ZERO

Mode Counter mode ENUM_
COUNTER_MODE QUADRATURE_2X

QUADRATURE_2X_-
WITH_ZERO
QUADRATURE_4X
QUADRATURE_4X_-
WITH_ZERO

COUNTER_VALUE Counter value DINT -2147483648 to 2147483647
HOLD Hold value DINT -2147483648 to 2147483647

EQ_COMPARER_0 Counter value is equal to
Comparer0 BOOL FALSE or TRUE

LT_COMPARER_0 Counter value is less than
Comparer0 BOOL FALSE or TRUE

GT_COMPARER_0 Counter value is greater than
Comparer0 BOOL FALSE or TRUE

EQ_COMPARER_1 Counter value is equal to
Comparer1 BOOL FALSE or TRUE

LT_COMPARER_1 Counter value is less than
Comparer1 BOOL FALSE or TRUE

GT_COMPARER_1 Counter value is greater than
Comparer1 BOOL FALSE or TRUE

ERROR

Error occurred in func-
tion block execution.
Can be caused by in-
valid COUNTER_VAR or
counter disabled.

BOOL FALSE or TRUE

Table 54: LibIntegratedIo.COUNTER function block description

5.6.2.1.1. Counter Interrupts

The high-speed counter units have the ability to generate interrupts by comparison, i.e., when the counter reach a certain
comparison value, an specific task will run and interrupt the main program execution. Each high-speed counter unit have two
comparison values, called Comparer0 and Comparer1, which are present on the corresponding global symbolic data structure
or FunctionBlock as described on previous sections. The configuration of counter interrupt for each high-speed counter unit is
located on the following screen:

69

5. CONFIGURATION

Figure 45: Counter interrupt settings

The table below shows the possible configuration values for the counter interrupt:

Configuration Description Default Options
Disabled

Counter 0 Counter0 comparator inter-
rupt configuration Disabled Counter0InterruptTask:

Counter equal to Comparer0

Obs: This configuration is
available when the Counter0
is associated to some Fast
Input.

Table 55: Counter interrupt parameters

The counter interrupt will generate an specific event. This event must trigger the execution of external event task, which
must call an specific POU. For example, the comparison event generated for Counter 0 is called COUNTER0_EVT. So, an
external event task called Counter0InterruptTask must be configured to be triggered by this event, and must call a POU called
Counter0InterruptPrg which will contain the user program to be executed.

The figure below shows this configuration scenario in MasterTool IEC XE.

Figure 46: Counter Interrupt Settings

70

5. CONFIGURATION

5.6.2.2. External Interruption

The fast inputs can be set as Interruption (Rising Edge) mode, which means that when a rising edge (0V to 24V transition)
is performed on the input, an specific task will run and interrupt the main program execution.

Each external interruption will generate an specific event. This event must trigger the execution of external event task,
which must call an specific POU. For example, the external interruption event generated for fast input I02 is called FIN2_EVT.
So, an external event task called FastInputI02InterruptTask must be configured to be triggered by this event, and must call a
POU called FastInputI02InterruptPrg which will contain the user program to be executed.

The figure below shows this configuration scenario in MasterTool IEC XE.

Figure 47: Fast Inputs Interruption Settings

ATTENTION

The external interruption input have a 10ms time window filter to protect the controller
against spurious transitions on the input signal. This window starts right after the occu-
rance of the interruption and, during this time, any other external interruption event will be
discarded.

ATTENTION

The external interruption does not supports reentrancy. If another interruption occurs (af-
ter the filter time) and its program execution is still not finished, this interruption will be
discarded.

5.6.3. Fast Outputs

The fast outputs are special output signals that can be used for pulse generator outputs. These special physical outputs
can be assigned to two types of logical elements: VFO/PWM (variable frequency/pulse width) and PTO (pulse train output).
Each of these logical elements consumes one fast output signal each one. The number of physical fast outputs, as well as
the maximum number of the VFO/PWM and PTO logical elements assignable to these outputs is described on Technical
Description section.

The configuration of fast outputs is located on the following screen:

71

5. CONFIGURATION

Figure 48: Fast Outputs Parameters

The table below shows the possible configuration values:

Configuration Description Default Options
Fast Output Q14 configura-
tion. Digital Output Digital Output

Fast Output Q14 VFO/PWM
PTO

Fast Output Q15 Fast Output Q15 configura-
tion. Digital Output Digital Output

VFO/PWM
Fast Output Q16 configura-
tion. Digital Output Digital Output

Fast Output Q16 VFO/PWM
PTO

Fast Output Q17 Fast Output Q17 configura-
tion. Digital Output Digital Output

VFO/PWM

Table 56: Fast Outputs Parameters

The PTO function can be assigned only for Q14 and Q16. When the output is configured on this mode, the adjacent output
(Q15 or Q17) will be forced to standard digital output mode.

As shown on the previous table, the fast outputs can be configured as standard digital output. In this case, its digital value
can be set using the standard global variable IntegratedIo.DigitalOutputs.

When configured as VFO/PWM or PTO, the user program can control the fast ouputs through the FastOutputs symbolic
structure, which is automatically created on IntegratedIo GVL as shown on the following figure:

72

5. CONFIGURATION

Figure 49: Fast Output structure

The table below describes the fast output variables structure:

Variable Description Type Allowed Values

Mode Fast output configured mode
(read only)

ENUM_FAST_ OUT-
PUT_MODE DIGITAL_OUTPUT

PWM
PTO

VFO_PWM

VFO/PWM structure. It
contains a structure to con-
trol the fast output when it’s
configured as VFO/PWM.

T_VFO_PWM -

PTO

PTO structure. It contains a
structure to control the fast
output when it’s configured
as PTO.

T_PTO -

Table 57: Fast Output structure variables

The next subsections give more details about how to use these pulse generator functions, describing these structures for
each mode.

5.6.3.1. VFO/PWM

The VFO/PWM (Variable Frequency Output / Pulse Width Modulator) is a pulse generator output mode where the fre-
quency and duty cycle can be controlled by the user program. It’s appliable, for example, to control the power transfered to an
electric load or to control the angle of a servo motor. The principle of operation of VFO/PWM output is very simple, see the
pulsed waveform that is shown in the figure below:

Figure 50: VFO/PWM waveform

73

5. CONFIGURATION

The figure shows a pulsed waveform, where T is the period of the pulses and τ is the pulse width. Those are the pulse
parameters which can be changed on VFO/PWM mode. The frequency is defined as the inverse of period, then:

f = 1
T

The duty cycle is the reason between the pulse width and the period, then:

D = τ
T 100%

To control the VFO/PWM output, the user program must access the VFO_PWM variable of the fast output structure. The
structure of VFO_PWM is shown on the table below:

Variable Description Type Allowed Values
Frequency Frequency in Hertz UDINT 1 to 200000
DutyCycle Duty Cycle in percent USINT 0 to 100

Command VFO/PWM commands
structure T_VFO_PWM_COMMAND -

Status VFO/PWM status structure T_VFO_PWM_STATUS -

Table 58: VFO_PWM variable structure

The table below shows the VFO_PWM commands structure.

Variable Description Type Allowed Values
Enable Enable VFO/PWM output BIT FALSE or TRUE

Table 59: VFO/PWM Command structure

The table below shows the VFO_PWM status structure.

Variable Description Type Allowed Values

InvalidFrequency Frequency value is invalid
(out of range) BIT FALSE or TRUE

InvalidDutyCycle Duty Cycle value is invalid
(out of range) BIT FALSE or TRUE

Table 60: VFO/PWM Status structure

Once the Enable command is TRUE, the input parameters will be continuously checked and the status variables will be
updated accordingly.

Additionally to the IntegratedIo global variables, there is a function block from LibIntegratedIo library which allows to
instantiate VFO/PWM in POUs written in graphical languages (e.g Ladder Logic Diagram). This function block is, actually,
a wrapper to the structured variables described before. The figure below shows the function block instantiated in a Ladder
program.

Figure 51: LibIntegratedIo.PWM function block

The table below describes the inputs and outputs variables of the function block.

74

5. CONFIGURATION

Variable Description Type Allowed Values

ENABLE Enable the function
block execution. BOOL FALSE or TRUE

FAST_OUTPUT Fast Output Variable. REFERENCE FastOutputs.Q14
TO FastOutputs.Q15
T_FAST FastOutputs.Q16
_OUTPUT FastOutputs.Q17

FREQUENCY Frequency in Hertz. UDINT 1 to 200000

DUTY_CYCLE Duty Cycle in per-
cent. USINT 0 to 100

RUNNING VFO/PWM is being
performed. BOOL FALSE or TRUE

ERROR

Error occurred in
function block exe-
cution. The follow
variables provide
detailed information.

BOOL FALSE or TRUE

INVALID_FREQUENCY Frequency value is
invalid (out of range). BOOL FALSE or TRUE

INVALID_DUTY_CYCLE Duty Cycle value is
invalid (out of range). BOOL FALSE or TRUE

INVALID_FAST_OUTPUT

FAST_OUTPUT
was not assigned
to the block or
isn’t configured as
VFO/PWM.

BOOL FALSE or TRUE

Table 61: LibIntegratedIo.PWM function block description

5.6.3.2. PTO

The PTO (Pulse Train Output) is a pulse generator mode. It’s used, for example, to control step motors responsible for
positioning of mechanisms with considerable inertia. For these cases, the rotation speed must increase slowly (acceleration)
when the movement is starting and decrease slowly (deceleration) when the movement is stopping. These acceleration and
deceleration are made on pulse train by increasing and decreasing the frequency of the pulses, maintaining the 50% of duty
cycle.

There are a set of parameter that must be defined for a pulse train: Start frequency, operation frequency, stop frequency,
acceleration profile, total number of pulses, number of pulses in acceleration step, number of pulses in deceleration step. The
figure below shows, on Cartesian plane, the relation between the frequency of the pulses and time. The pulse train shown is
called trapezoidal profile, because the acceleration and deceleration ramps produce a trapezium shape.

Figure 52: PTO with trapezoidal profile

75

5. CONFIGURATION

For some applications it is more recommended to use the “S” profile, which acceleration and deceleration curves are similar
to “S” shape. The figure below shows this profile.

Figure 53: PTO with “S” profile

Besides the PTO parameters, there are status information and commands that the user program can use to control the
output. Some important status information are the pulse counter (proportional to a position), the pulse train step (acceleration,
operation, deceleration) and, even, if the output is working fine. The commands required to control PTO are to start the pulse
train, to stop the pulse train and to stop the pulse train softly (soft stop). The soft stop command is very important, once can
be used for emergency situations where the system can’t stop abruptly. The figures below shows how the soft stop command
change the pulse train when it is performed. The dashed blue lines represents the PTO if the soft stop command is performed
on acceleration and operation steps. The soft stop command on deceleration step has no effect, once the system is already
stopping.

Figure 54: PTO Softstop on trapezoidal profile

Figure 55: PTO Softstop on "S" profile

76

5. CONFIGURATION

To control the PTO, the user program must access the PTO variable of the fast output structure. The structure of PTO is
shown on the table below:

Variable Description Type Allowed Values
StartFrequency Start frequency in Hertz UDINT 0 to 200000
StopFrequency Stop frequency in Hertz UDINT 0 to 200000

MaxFrequency Maximum frequency in
Hertz UDINT 1 to 200000

AccelerationProfile
Acceleration profile
(FALSE = Trapezoidal
profile, TRUE = S profile)

BOOL FALSE or TRUE

AccelerationPulses Pulses in acceleration UDINT 0 to (TotalPulses-
DecelerationPulses-1)

DecelerationPulses Pulses in deceleration UDINT 0 to (TotalPulses-
AccelerationPulses-1)

TotalPulses Total number of pulses UDINT 1 to 4294967295

PulsesCounter Number of pulses generated
for the current pulse train UDINT 0 to 4294967295

Command PTO commands structure T_PTO_COMMAND -
Status PTO status structure T_PTO_STATUS -

Table 62: PTO variable structure

The table below shows the PTO commands structure.

Variable Description Type Allowed Values

Start Start the pulse train when
this bit is set (rising edge) BIT FALSE or TRUE

Stop Stop the pulse train when
this bit is set (rising edge) BIT FALSE or TRUE

Softstop
Stop softly the pulse train
when this bit is set (rising
edge)

BIT FALSE or TRUE

Table 63: PTO Command structure

77

5. CONFIGURATION

The table below shows the PTO status structure.

Variable Description Type Allowed Values

Running Pulse train is being per-
formed BIT FALSE or TRUE

Acceleration
Acceleration step (from
StartFrequency to MaxFre-
quency)

BIT FALSE or TRUE

Deceleration
Deceleration step (from
MaxFrequency to StopFre-
quency)

BIT FALSE or TRUE

Operation Operation Step (MaxFre-
quency) BIT FALSE or TRUE

Done Pulse train has already been
performed BIT FALSE or TRUE

InvalidFrequency Frequency (start, stop or
maximum) is invalid BIT FALSE or TRUE

InvalidPulses
Number of pulses (To-
talPulses, Acceleration or
Deceleration) is invalid

BIT FALSE or TRUE

Table 64: PTO Status structure

Once the Start command is TRUE, the input parameters will be continuously checked and the status variables will be
updated accordingly.

Additionally to the IntegratedIo global variables, there is a function block from LibIntegratedIo library which allows to
instantiate PTO in POUs written in graphical languages (e.g Ladder Logic Diagram). This function block is, actually, a wrapper
to the structured variables described before. The figure below shows the function block instantiated in a Ladder program.

Figure 56: LibIntegratedIo.PTO function block

The table below describes the inputs and outputs variables of the function block.

Variable Description Type Allowed Values

ENABLE Enable the function block
execution BOOL FALSE or TRUE

78

5. CONFIGURATION

Variable Description Type Allowed Values
FAST_OUTPUT Fast Output Variable REFERENCE FastOutputs.Q14

TO FastOutputs.Q15
T_FAST FastOutputs.Q16
_OUTPUT FastOutputs.Q17

START Start the pulse train when
this bit is set (rising edge) BOOL FALSE or TRUE

STOP Stop the pulse train when
this bit is set (rising edge) BOOL FALSE or TRUE

SOFT_STOP
Stop softly the pulse train
when this bit is set (rising
edge)

BOOL FALSE or TRUE

START_FREQUENCY Start frequency in Hertz UDINT 1 to 200000
STOP_FREQUENCY Stop frequency in Hertz UDINT 1 to 200000

MAX_FREQUENCY Maximum frequency in
Hertz UDINT 1 to 200000

ACCELERATION_PROFILE
Acceleration profile
(FALSE = Trapezoidal
profile, TRUE = S profile)

BOOL FALSE or TRUE

ACCELERATION_PULSES Pulses in acceleration UDINT 0 to (TotalPulses-
DecelerationPulses-1)

DECELERATION_PULSES Pulses in deceleration UDINT 0 to (TotalPulses-
AccelerationPulses-1)

TOTAL_PULSES Total number of pulses UDINT 1 to 4294967295

RUNNING Pulse train is being per-
formed BOOL FALSE or TRUE

PULSES_COUNTER Number of pulses generated
for the current pulse train UDINT 0 to 4294967295

ACCELERATION
Acceleration step (from
StartFrequency to MaxFre-
quency)

BOOL FALSE or TRUE

OPERATION Operation Step (MaxFre-
quency) BOOL FALSE or TRUE

DECELERATION
DecelerationStep (from
MaxFrequency to StopFre-
quency)

BOOL FALSE or TRUE

ERROR
Error occurred in function
block execution. The follow
variables detail the error.

BOOL FALSE or TRUE

INVALID_FREQUENCY Frequency (start, stop or
maximum) is invalid BOOL FALSE or TRUE

INVALID_PULSES
Number of pulses (acceler-
ation or deceleration) is in-
valid

BOOL FALSE or TRUE

INVALID_FAST_OUTPUT
FAST_OUTPUT was not as-
signed to the block or isn’t
configured as PTO.

BOOL FALSE or TRUE

DONE Pulse train has already been
performed BOOL FALSE or TRUE

Table 65: LibIntegratedIo.PTO function block description

79

5. CONFIGURATION

5.6.4. Analog Inputs

The parameters related to the Analog Inputs are shown below:

Figure 57: Analog Inputs Parameters

The table below shows the possible configuration values:

Configuration Description Default Options
Input Type Selects the input type Not configured Not configured

Voltage 0 - 10 Vdc
Currrent 0 - 20 mA
Current 4 - 20 mA

Digital Filter
Enable/Disable a 1st
order low pass digital
filter for each input

Disabled Disabled

100 ms
1 s
10 s

Open Loop Value

Set value when in
open loop condition
(Only valid for 4 - 20
mA scale)

Disabled Disabled

0
30000

Table 66: Analog Inputs Parameters

Notes:
Input Type: Be sure to use the proper pin on the terminal block correspondent to the selected type (voltage or current).
Open Loop Value: : Determines the behavior of the input variable when set to 4 - 20 mA scale and current less than 3

mA.

80

5. CONFIGURATION

5.6.5. RTD Inputs

The parameters related to the RTD Inputs are shown below:

Figure 58: RTD Inputs Parameters

The table below shows the possible configuration values:

Configuration Description Default Options

Temperature Unit Selects the tempera-
ture unit Degree Celsius Degree Celsius

Degree Fahrenheit
Input Type Selects the input type Not configured Not configured

400 Ω

4000 Ω

Pt100A
Pt100E
Pt1000A
Pt1000E

Digital Filter
Enable/Disable a 1st
order low pass digital
filter for each input

Disabled Disabled

100 ms
1 s
10 s

Table 67: RTD Inputs Parameters

The next table describes additional details about each input type:

Input type Temperature Coef-
ficient (α) Measurement Band Count Resolution

400 Ω - 0 to 400 Ω 0 to 4000 0.1 Ω

4000 Ω - 0 to 4000 Ω 0 to 4000 1 Ω

Pt100E, 0,00385 -200 to 850 ◦C -2000 to 8500 0.3 ◦C
Pt1000E -328 to 1562 ◦F -3280 to 15620 0.6 ◦F
Pt100A, 0,003916 -200 to 630 ◦C -2000 to 6300 0.3 ◦C
Pt1000A -328 to 1166 ◦F -3280 to 11660 0.6 ◦F

Table 68: RTD Input Types

81

5. CONFIGURATION

5.6.6. Analog Outputs

The parameters related to the Analog Outputs are shown below:

Figure 59: Analog Outputs Parameters

The table below shows the possible configuration values:

Configuration Description Default Options
Output Type Selects the output Not configured Not configured

type Voltage 0 - 10 Vdc
Current 0 - 20 mA
Current 4 - 20 mA

Table 69: Analog Outputs Parameters

5.6.7. I/O Mapping

In the I/O Mapping tab, it is possible to configure the name and description for each input and output variable.

Figure 60: I/O tag mapping

82

5. CONFIGURATION

5.7. Management Tab Access
Developed to perform configuration and diagnostics access to some features. The Management tab of the System Web

Page has its access protected by user and password, with admin as the default value for both fields.
On the Management tab, there are other resources such as System, Network, SNMP, USB Device, Firewall, OpenVPN, and

FTP Server. The resources available on this tab vary according to the features available for the controller used and can only be
accessed after the user has logged in, as shown in the figure below.

Figure 61: Management Tab Access

5.7.1. System Section

In the System section, you can perform a CPU firmware update. For cases in which the update is done remotely (through a
radio or satellite connection, for example), the minimum speed of this link must be 128 kbps.

5.7.1.1. Clock Setting

On the System Web Page, it is possible to adjust the controller’s clock, which is found in the System section of the
Management tab. The date and time format follows the ISO 8601 standard for date and time sampling (YYYY/MM/DD
hh:mm:ss), as shown in the image below:

83

5. CONFIGURATION

Figure 62: Clock Setting

This feature has two modes for adjusting the device’s time, which can be selected in the item “Clock Source”, providing
the user with two options for synchronizing the clock.

5.7.1.1.1. Computer Time (UTC)

In computer time mode, user can apply the time configured on his computer in UTC for his device. To do so, select the
option “Computer” in the “Clock Source” item. After clicking on the "Apply" button, it is necessary to validate the device’s
credentials, then the CPU will receive the date and UTC time that are configured on the computer.

5.7.1.1.2. Custom Time (UTC)

In the custom time mode, the user can prepare a custom time in UTC standard to be applied to the device’s internal date
and time. To do so, select the “Custom” option in the “Clock Source” item. With the mode selected, the user must configure
the desired date and time in the “Custom Time (UTC)” item, which will be initialized with the browser’s local time. So, after
the user clicks on the "Apply" button and validates the device’s credentials, it will have its internal time configured with the
time configured in the item "Custom Time (UTC)".

ATTENTION

The lowest configurable date and time value is 2000/01/01 00:00:00. The highest date and
time value is 2035/12/31 23:59:59.

5.7.2. Network Section

Designed to assist in the usability of the controller, the Network section (figure below) allows you to change network
addresses and run the Network Sniffer.

84

5. CONFIGURATION

Figure 63: Network Section

5.7.2.1. Network Section Configurations

5.7.2.1.1. Defined by Application

The Mode field defines which configuration the controller should load for its interfaces. This field can be configured as
Defined By Web Page or Defined By Application.

When set to Defined by Application, the interface table is disabled, not allowing changes, as shown in the figure below. In
this mode, the settings applied to the controller are those defined by the application.

ATTENTION

The table for network configuration is displayed only when there is no application on the
controller or the controller is not running. It is not possible to change the network settings
while an application is running on the controller.

Below is an image with Defined by Application mode selected, showing the interface table disabled.

85

5. CONFIGURATION

Figure 64: Interfaces Table - Application Mode

5.7.2.1.2. Defined by web page

For the Defined by web page mode, the interface table remains enabled, as shown in the figure below.
In this mode, the user can configure the IP Address, Netmask, and Gateway of each of the available Ethernet interfaces.

Figure 65: Interfaces Table - Web Mode

To have the settings applied to the controller, simply click the Apply button. This process checks if there were any errors
in the configuration made and, if so, displays a message on the browser screen indicating the error. If your settings are correct,
after clicking Apply, a confirmation window appears in your browser to apply the new settings. By clicking OK, the settings
are sent to the controller and applied.

86

5. CONFIGURATION

ATTENTION

When making network changes in the controller, the interfaces will be restarted, which may
cause a communication loss. This is especially true when changing the IP address value.

When applying settings using the Defined by Application mode, the controller will assume the configuration that was
defined by the loaded application. If there is no application, the current configuration will be maintained, with only the
configuration mode being changed.

Using the Defined by Web Page mode, the addresses indicated on the web page will be loaded.

ATTENTION

The Defined by Web Page mode configures the interfaces to operate in Simple Mode.

It is possible to monitor through MasterTool whether the IP address is configured from the Web Page or from the application
by the bNetDefinedByWeb diagnostic BIT in the Application group, which will change to TRUE if the IP is configured from
the Web Page and to FALSE if it is configured from the application.

Figure 66: Diagnostics - IP defined by the Web Page

5.7.2.2. Network Sniffer

The network sniffer, shown in the figure below, can be used to observe traffic on physical interfaces, except for USB devices
such as modems and wifi adapters. It has two basic settings:

Number of Packets: This is the number of packets you want to capture. The configured value of this parameter must be
within the range of 100 to 25000 packets;

Idle Timeout (seconds): If there is no packet traffic on the interface after this configured timeout, Sniffer is terminated. It
can be configured with values between 1 and 3600 seconds.

Only a few moments after the screen opens will the Run button, which starts Sniffer’s execution, become available. The
Download button will only be unlocked if there is a Sniffer related file available for download. If the Sniffer has never been
run or the file is deleted, the button will not be available.

When running the Network Sniffer, the page will disable the edit fields, the Download button will be locked, and the Run
button will become the Stop button, as shown in the figure below.

87

5. CONFIGURATION

Figure 67: Network Sniffer Running

The Stop button can be used to end the sniffer execution at any time after it has been started.
For each of the interfaces on which Sniffer runs, it generates a .pcap file. These files are named according to the name of

the controller and the interface that was analyzed, for example, NX3008_NET1.pcap. These files are found inside a .zip file,
also named according to the name of the controller, for example, NX3008_capture.zip.

At the end of the sniffer execution, a message is displayed asking whether or not to automatically download the generated
files. These files are stored in the InternalMemory folder of the User Files Memory and can be accessed through the controller’s
programming software. The downloaded file is always in the .zip extension, which groups the other files.

If any problems occur related to insufficient memory due to the generation of sniffer files, it will be indicated to the user. It
is recommended to try running the analyzer again with a smaller Number of Packets configuration.

The network sniffer can terminate its execution for three reasons: insufficient memory, idle time limit of interfaces ex-
ceeded, and manual cancellation.

5.8. USB Port
The USB Host port present on Nexto Xpress controllers allows to extend the controller’s functionalities by using several

types of USB dongles. Due to the wide range of USB devices available on the market (flash drives, Ethernet/Wifi adapters,
3G/4G modem, etc...), the support for each specific device is provided by a firmware update.

The management of USB devices is done through a dedicated section located on the PLC Management tab of the con-
troller’s system webpage as shown below:

88

5. CONFIGURATION

Figure 68: USB Devices Section

The content of this page changes dynamically according to the type of USB device that is connected. In the example above,
there is no device connected.

The following sections describe all the types of USB devices currently supported. If an unsupported device is connected,
the page will inform that device is unknown:

Figure 69: USB Devices - Unknown

5.8.1. Mass Storage Devices

5.8.1.1. General Storage

Mass storage devices can be used to expand the controller’s flash memory to store big amount of data, like on datalogger
applications, for instance. To use a USB mass storage device, simply connect it to the USB port. After a few seconds, when

89

5. CONFIGURATION

the device is properly detected and mounted, the USB LED will turn on and the device information will appear on section USB
Devices located at the tab PLC Management of the controller’s diagnostics webpage as shown below:

Figure 70: Mass Storage Device Information

The information shown on the status section of this page is also available in the symbolic variables diagnostics structure
(see Section Diagnostics via Variables).

ATTENTION

The USB mass storage device must be formatted as a FAT32 volume. Other filesystem
formats are not supported.

The device can be ejected using the command provided on the Commands area of this page as indicated on the picture
above.

After the device is properly detected and mounted, a new folder called Mass_Storage will appear on the controller’s
memory as shown on the picture below:

Figure 71: USB Mass Storage Folder

90

5. CONFIGURATION

5.8.1.2. Not Loading the Application at Startup

The USB mass storage device can be used to prevent the controller from automatically loading the application after the
power on. To do that, simply place an empty text file called "dontbootapp.txt" on the root folder of mass storage device. The
presence of this file is informed in the Special Files field on controller’s system webpage as shown below.

Figure 72: DontBootApp in the Mass Storage Device

5.8.1.3. Transfering an Application from the USB device

The USB mass storage device can also be used to transfer an application to the controller. To do that, place the two files
Application.app and Application.crc on the root folder of mass storage device. If there is a WebVisu declared in the project,
the folder PLC Folder must also be copied (these files are created using MasterTool IEC XE executing the command Online
-> Create boot application when offline). After the power on, if the controller detects the presence of these files on the USB
mass storage device, the following sequence of actions will occur:

The controller will start copy of the application from USB device to internal memory
After finishing the copy process, the USB device will be ejected (USB LED will turn off)
The new application will start (RUN) automatically (if "dontbootapp.txt" is not present)

The presence of the application is informed in the Special Files field on controller’s system webpage as shown below:

91

5. CONFIGURATION

Figure 73: Application in the Mass Storage Device

Note that it is possible to have multiple Special Files in the same Mass Storage. In the example above, the PLC will transfer
the new application to the internal memory but not load it on startup (hence, will not go to RUN).

5.8.2. USB to RS-232 Converters

Nexto Xpress allows to implement a RS-232 port using a USB to Serial converter. These converters are based on an internal
controller chip. The following table shows the list of supported controllers:

Controller Manufacturer
FT232 FTDI

PL2303 Prolific

Table 70: Supported USB to RS-232 converters

This port is intended to be used exclusively with the Serial communication function blocks provided by the NextoSerial
library, allowing to implement a point-to-point communication with equipments that use simple protocols (non time critical)
like Radio modems, Barcode readers, RFID readers, etc... Additionally, this kind of solution has the following limitations:

Baud Rate: values lower than 4800 bps are not supported
Data Bits: value “5” is not supported (only 6, 7 or 8)
Parity: values “mark” and “space” are not supported (only Odd, Even and None)
Stop Bits: value “1.5” is not supported (only 1 or 2)

After plugging the converter into the USB port, the USB LED may turn on indicating that the device was properly detected
and mounted and the device information will appear on section USB Devices located at the tab PLC Management of the
controller’s System Web Page as shown below:

92

5. CONFIGURATION

Figure 74: USB Devices - Serial Converter

The information shown on this page is also available in the symbolic variables diagnostics structure (see Section Diagnos-
tics via Variables).

This additional serial port will be identified internally as COM10, and will not have a representation on the project treeview.
From this point, this port can be used for communication using the NextoSerial functions similar to the native ports. For this
kind of port, the handshake configuration is limited to RS232_MANUAL only (must be considered when configuring the port
with SERIAL_CFG function).

5.8.3. Modem Devices

An USB Modem with a SIM chip can be used to connect the PLC to the internet using the cellular data network (telephone
services, like sending SMS, are not implemented). This feature allows to use Nexto Xpress controllers to implement telemetry
and IoT applications. There are basically two types modems: bridge and router. The following table shows the list of supported
devices.

Model Manufacturer Type Remarks
E303 Huawei Bridge -

E3272 Huawei Bridge -
E3276 Huawei Bridge -

E8372 Huawei Router

Redirection of the configuration web page
(button Open Modem Configuration) is not
supported for this model. In this case, the
modem configuration must be done exter-
nally by plugging it directly on a PC.

Table 71: Supported USB modems

The bridge modem is a non-managed device that implements a direct connection (pass through) to the mobile data network,
so all the connection requests coming from the internet will reach the controller’s operating system. For this kind of device,
the configuration is performed through the controller’s system web page as described further on this section.

On the other hand, the router modem is a managed device that implements a firewall with configurable network policies.
For this kind of device, all the configuration is performed through a proprietary web page that is embedded into the device.
By default, the Modem blocks any kind of inbound connections (i.e, will not allow the remote access). To allow this, the user
must configure the modem through the device embedded web page to open the TCP port related to the desired service (some

93

5. CONFIGURATION

manufacturers calls this feature as Virtual Server or Port Forwarding). The following table describes the number of the TCP
port associated to the main services of the PLC.

Port Service
80 Embedded system web page

8080 Embedded Webvisu web page
1217 MasterTool programming

Table 72: TCP ports of main PLC services

The management of the USB Modem functionality is done through the USB Devices page in the PLC Management tab of
the controller’s system webpage. Once the Modem device is properly detected and mounted, the USB LED will turn on and
the device information will appear as shown below:

Figure 75: USB Modem Page Configuration

This area contains basically two sections: Status and Configuration.
The Status section is where all diagnostics related to the USB modem are displayed: configuration state (which does not

depends on the device state), internet connection state and the modem IP address. These fields are updated automatically every
time that a value is updated (does not require to reload the page manually). The same information is also provided on the
symbolic variables diagnostics structure (see Section Diagnostics via Variables), which also contains the detailed description
of the possible values for each field.

The Configuration section is where the user performs the modem configuration. For bridge modems, this section is used
to enter the SIM chip information. For router modems, this section will show only a button called Open Modem Configuration
that will redirect to the internal modem web page (check on the list of compatible devices if the redirection is supported,
otherwise the modem must be configured externally on a PC). This section contains the following buttons:

Import: loads the configuration from an external file
Export: saves the current configuration on an external file
Reset: erases the modem configuration from controller’s memory
Apply: write the configuration on the controller’s memory

94

5. CONFIGURATION

ATTENTION

The provider APN and PIN code fields are mandatory for every SIM chip. If the provider
informs these parameters, they shall be used. In other hand, it’s known that several SIM
chips simply doesn’t care for the content of these fields, using internal predefined values. In
this case, these fields of the web page can be left with the default values and the connection
will proceed successfully. Values like "zero" for PIN Code and "empty" for the Provider
APN are not allowed.

The operation principle of USB Modem functionality is rather simple. For bridge devices, once the device is properly
detected and the SIM parameters configured, the controller starts a background process, which continuously controls the
modem to keep it connected to the internet. This eliminates the need of any kind of manual intervention, so if the connection
is dropped for some reason (bad reception, carrier outage, etc.), the controller will try to reconnect automatically. The status
of this process can be observed by the Connection Status field. For router modems, the device contains a similar process that
runs internally (independent from the controller) that is called Auto Connect. It generally comes enabled by default, but can be
disabled through the modem web page.

One important aspect to consider is that, if the USB Modem is configured, the controller system will set it as the default
gateway for all Ethernet communication. It means that, if the controller is simultaneously connected to a local network (NET1),
which has also access to the internet, all the Ethernet messages addressed to external IPs will route through the USB Modem
(and not through NET1). NET1 returns as the default gateway when the USB Modem was removed.

The configuration and operation sequence can be summarized into the following steps:
Plug the device into the USB port. After some seconds, the USB Devices page will show the Device as "Modem". If not,
the device might be unsupported or defective.
(For bridge devices) Set the SIM parameters (Provider APN - Access Point Name and the chip PIN code) as informed
by the SIM chip provider. After clicking on Apply button, the connection process will start. Once configured, it is not
necessary to set this information anymore. It will be saved on the controller’s memory.
Watch the connection status on the corresponding field. If everything goes fine, after some seconds it will inform that
the modem is connected to the internet, and an IP address will appear in its field.

Once connected to the internet, this communication channel can be used for several purposes. One typical use case is to
implement telemetry solution using MQTT Client Function Block to publish data. Another use case is to access the controller
remotely. In this case, it is necessary to know the modem IP address on the internet. However, this address is dynamic and
changes on every connection process. One way to workaround this problem is to publish the IP address (available on the
modem diagnostic variables) through MQTT.

With the Modem IP address, it is possible to perform remote access to the controller’s system web page to view status and
diagnostics (firmware update is not supported). Also, it allows to program the controller remotely using MasterTool IEC XE.
For this, the gateway must be configured with the Modem IP address like shown on the following picture:

Figure 76: Configuring Gateway with Modem IP Address

95

5. CONFIGURATION

ATTENTION

For bridge devices, or router devices with external access enabled (port forwarding), once
connected to the internet, anyone who knows the modem IP address will be able to access
the controller remotely. So, for security reasons, it is EXTREMELY important and recom-
mended to configure the User Rights on the controller to restrict the online operations of
MasterTool IEC XE with login and password.

5.8.4. WiFi Adapters

An USB WiFi adapter can be used to connect the PLC to an existing WiFi network, creating a second network adapter that
can be used for programming and communication. The following table shows the list of supported chipsets.

Chipset Manufacturer Example of comercial products
RTL8188EU Realtek TP-LINK model TL-WN725N

LM Technologies model LM007
RT28xx Ralink/Mediatek D-Link model DWA-125
AR9271 Atheros/Qualcomm TP-LINK model TL-WN721N

Table 73: Supported chipsets for USB WiFi adapters

The management of the WiFi Adapter functionality is done through the USB Devices page in the PLC Management tab of
the controller’s system webpage. Once the WiFi adapter device is properly detected and mounted, the USB LED will turn on
and the device information will appear as shown below:

Figure 77: USB WiFi Adapter Page

This page contains basically two sections: Status and Configuration.
The Status section shows all diagnostics related to the WiFi adapter: configuration state, connection state, IP address,

Netmask, Gateway and MAC address. These fields are updated as soon the values change. These informations are also
provided in the symbolic variables diagnostics structure (see Section Diagnostics via Variables).

The Configuration section is composed by the following parameters:

Operation Mode: defines how the WiFi adapter will operate (currently, only client mode is supported).

96

5. CONFIGURATION

Discovery Mode: defines what is the method to set the WiFi network. If selected as "Auto", the "Scan" button must be
used to choose the wanted network. If selected as "Manual", the name of the SSID and Security Type must be entered
manually.
Network SSID: when discovery mode is set to "Auto", this field will show the available networks found on the scan
process sorted from the best to the worst signal level (up to down). When discovery mode is set to "Manual" this field
must be populated with the SSID of the wanted network.
Security Type: this field is only available when the discovery mode is set to "Manual" (the "Auto" mode automatically
selects the security type provided by the scanned network). This field defines the type of security used in the WiFi
network, which can be "Public" or "WPA2-Personal".
Password: this where you need to enter with the WiFi network password. The field will be automatically blocked if the
Security Type is set as "Public" or the scanned network chosen does not use a security protocol.
IP Definition: defines if the WiFi adapter will set the IP address dynamically (assigned by the network DHCP Server)
or statically (where the user needs to enter the IP settings manually).
IP Address, Network Mask and Gateway: only available when the IP definition is set as "Static". These fields will be
used to configure the network parameters of the WiFi adapter.
Default Gateway: this field defines what network interface will be used as a Gateway to access the Internet. It is
possible to choose the "WiFi Adapter" or the "Local Ethernet" for this function.

ATTENTION

For proper operation, the WiFi adapter network (defined by IP and Mask) must be different
from the one configured for NET1.

Figure 78: USB WiFi Adapter Configuration

Besides that, the Configuration section contains the following buttons:

Import: loads a configuration file
Export: download a file with the current configuration
Reset: returns the configuration to the default
Apply: apply the current configuration

Once the device is properly detected and the network parameters are configured, the controller will always try to keep
connected to the WiFi network. The status of this process can be observed by the Connection Status field.

97

5. CONFIGURATION

ATTENTION

If the Default Gateway was set as "WiFi Adapter", the Gateway of the NET1 diagnostics of
the MasterTool will show zero (0.0.0.0). Otherwise, if it was set as "Local Ethernet", the
WiFi adapter Gateway will be zero.

The configuration and operation sequence can be summarized into the following steps:

Plug the device into the USB port. After some seconds, the USB Devices page will show the Device as "WiFi Adapter".
If not, the device might be unsupported or defective.
Set the network configuration. After clicking on Apply button, the connection process will start. Once configured, it is
not necessary to set this information anymore. It will be saved on the controller’s memory.
Watch the connection status on the corresponding field. If everything goes fine, after some seconds it will inform that
the adapter is connected to the WiFi network.

The following picture shows the page of a controller connected to a WiFi network:

Figure 79: USB WiFi Adapter Connected to a Network

Once connected to the WiFi network, this communication channel can be used for several purposes. To program the PLC
with MasterTool IEC XE, the gateway must be configured with the IP address assigned to the WiFi adapter (similar to the
USB Modem, Figure 76). This IP address can also be used to access the controller’s system web page, where it is possible to
perform a firmware update, which is not available when using the USB Modem. Additionally, this communication channel can
also be used with the MQTT client Function Block to report data to an external broker on the internet (in this case, the WiFi
adapter as Default Gateway).

5.8.5. Ethernet Adapters

The Nexto Xpress series of controllers allows implementing a second Ethernet port using an USB Adapter to Ethernet. The
following table shows the list of supported devices.

Adapter Manufacturer
USB 3.0 to Gigabit SuperSpeed Ethernet Adapter UE300 TP-LINK

USB31000S USB 3.0 to Gigabit Ethernet Adapter STAR TECH

Table 74: Supported USB to Ethernet adapters

98

5. CONFIGURATION

The management of the Ethernet Adapter functionality is done through the USB Devices page in the Management tab of
the controller’s system web page. Once the USB Ethernet adapter device is properly detected and mounted, the USB LED will
turn on and the device information will appear as shown below:

Figure 80: USB Ethernet Adapter Page without Configuration

The USB Ethernet adapter’s page contains basically two sections: Status and Configuration.
The Status section shows all diagnostics related to the Ethernet adapter: Link state, IP address, Netmask, Gateway and

MAC address. These fields are automatically updated based on the current state of the device. These informations are also
provided in the symbolic variables diagnostics structure (see Section Diagnostics via Variables).

The Configuration section is composed by the following parameters: IP address, Netmask and Gateway. These fields will
be used to configure the Ethernet adapter’s network parameters.

ATTENTION

For proper operation, the Ethernet adapter network (defined by IP and Mask) must be differ-
ent from the one configured for NET1.

99

5. CONFIGURATION

Figure 81: USB Ethernet Adapter Page with Configuration Applied

Besides that, the Configuration section contains the Apply button for that the IP, Netmask and Gateway settings are defi-
nitely applied. After the device is correctly configured with compatible network parameters, whenever the adapter is connected,
the last configuration performed will be applied, regardless of whether it is a different adapter than the last configured one.

ATTENTION

The USB Ethernet adapter becomes the Default Gateway when configured.

The configuration and operation sequence can be summarized into the following steps:

Plug the device into the USB port. After some seconds, the USB Devices page will show the Device as "Ethernet
Adapter". If not, the device might be unsupported or defective.
Set the network configuration. After filling in the fields, use the Apply button to carry out the settings. Once configured,
it is not necessary to set this information anymore. It will be saved on the controller’s memory.
Watch the status of the network settings on the corresponding field. If everything goes fine, after some seconds it will be
showed the parameters applied in the last item. After this, just it is necessary to connect an Ethernet cable to establish a
connection with the network (when the cable was connected, the Link state must go to UP).

The following picture shows the page of a controller with an USB Ethernet Adapter configured and connected to a network:

100

5. CONFIGURATION

Figure 82: USB Ethernet Adapter Page with Configuration Applied and Link UP

The USB Ethernet adapter allows the controller expands its network interfaces, creating the possibility of dedicating the
NET1 to run a communication protocol, for example, the protocol to SoftMotion. Therefore, the adapter can be used for other
purposes, such as programming the PLC with the MasterTool IEC XE or using the IP address to access the web page of the
controller system, where it is also possible to perform a firmware update.

5.9. Communication Protocols
Independently of the protocols used in each application, the Nexto Series CPUs has some maximum limits for each CPU

model. There are basically two different types of communication protocols: symbolic and direct representation mappings. The
maximum limit of mappings as well as the maximum protocol quantity (instances) is defined on table below:

XP300 XP315 XP325 XP340 XP350 XP351
Mapped Points 20480
Mappings (Per Instance / Total) 5120 / 20480
Requests 512
NETs – Client or Server instances 4
COM (n) – Master or Slave instances 1
Control Centers - - - 3 - -

Table 75: Protocol Limits per CPU

Notes:
Mapped Points: It is the maximum number of mapped points that the CPU supports. Each mapping can contain one or

more mapped points, depending on the data size. This varies depending on whether simple variables or ARRAY-type variables
are used. Each simple variable, as well as each index of an ARRAY, is counted as a mapped point, even if it occupies more than
one address in the driver. For example, a simple DWORD-type variable mapped in the MODBUS protocol will be counted as
a single point, even though it occupies two consecutive addresses/registers in the driver.

Mappings: A “mapping” is the relationship between an internal application variable and an object of the application
protocol. This field informs the maximum number of mappings supported by the CPU. It corresponds to the sum of all
mappings made within the instances of communication protocols and their respective devices.

Requests: The sum of requests for communication protocols, declared on the devices, cannot exceed the maximum number
of requests supported by the CPU.

101

5. CONFIGURATION

Control Centers: Control Center is all client device connected to the CPU through protocol IEC 60870-5-104. This
field informs the maximum of client devices of control center type supported by the CPU. Correspond to the sum of all client
devices of communication protocol Server IEC 60870-5-104 (does not include master or clients from MODBUS RTU Slave
and MODBUS Server protocols)

The limitations of the MODBUS protocol for symbolic mappings can be seen in the table below.

Limitations MODBUS RTU
Master

MODBUS RTU
Slave

MODBUS
Ethernet Client

MODBUS
Ethernet Server

Devices per instance 64 1(1) 64 64(2)

Requests per device 32 - 32 -
Simultaneous requests per in-
stance - - 128 64

Simultaneous requests per device - - 8 64

Table 76: MODBUS Protocol Limitations for Symbolic Mappings

Notes:
Devices per instance:

Master or Client Protocol: Number of slave or server devices supported by each Master or Client protocol instance.
MODBUS RTU Slave Protocol: the limit (1) informed relates to serial interfaces that do not allow a Slave to establish
communication through the same serial interface, simultaneously, with more than one Master device. It’s not necessary,
nor is it possible to declare or configure the Master device in the instance of the MODBUS RTU slave protocol. The
master device will have access to all the mappings made directly on the instance of MODBUS RTU slave protocol.
MODBUS RTU Server Protocol: the limit (2) informed relates to the Ethernet interfaces, which limit the amount of
connections that can be established with other devices through a single Ethernet interface. It is not necessary, nor is it
possible to declare or configure Clients devices in the instance of the MODBUS Server protocol. All Clients devices
will have access to all the mappings made directly in the instance of the MODBUS Server protocol.

Requests by device: Number of requests, such as reading or writing holding registers, which can be configured for each of
the devices (slaves or servers) from Master or Client protocols instances. This parameter does not apply to instances of Slave
or Server protocols.

Simultaneous Requests per Instance: Number of requests that can be simultaneously transmitted by each client protocol
instance or that can be received simultaneously by each server protocol instance. MODBUS RTU protocol instances, Master
or Slave, do not support simultaneous requests.

Simultaneous Requests per Device: Number of requests that can be simultaneously transmitted for each MODBUS server
device, or may be received simultaneously from each MODBUS client device. MODBUS RTU devices, Master or Slave do
not support simultaneous requests.

The limitations of the IEC 60870-5-104 Server protocol can be seen in the table below.

Limitations IEC 60870-5-104 Server
Devices per instance 3
Simultaneous requests per instance 3
Simultaneous requests per device 1

Table 77: Protocol IEC 60870-5-104 Server Limits

Notes:
Devices per instance: Quantity of client devices, of type control center, supported for each IEC 60870-5-104 Server

protocol instance. The limit informed might be smaller because of the CPU total limits (check Table 75).
Simultaneous requests per instance: Quantity of requests that can be received simultaneously by each instance of Server

protocol.
Simultaneous requests per device: Quantity of requests that can be received simultaneously of each IEC 60870-5-104

Client device.

102

5. CONFIGURATION

5.9.1. Protocol Behavior x CPU State

The table below shows in detail the behavior of each configurable protocol in Nexto Series CPUs in every state of operation.

CPU operational state
STOP RUN

Protocol Type

After
download,

before
application

starts

After the
application

goes to
STOP

(PAUSE)

After an
exception Execution

After a
breakpoint
in MainPrg

MODBUS Symbol Slave/Server
Master/Client

MODBUS Slave/Server
Master/Client

SOE (DNP3) Outstation
IEC 60870-5-104 Server
EtherCAT Master
OPC DA Server
OPC UA Server
SNTP Client
HTTP Server
SNMP Agent
EtherNet/IP Scanner

Adapter

Table 78: Protocol Behavior x CPU State

Notes:
Symbol : Protocol remains active and operating normally.
Symbol : Protocol is disabled.
EtherCAT: The tests were performed using the default value defined in PLC Settings (see table PLC Settings), with option

Update I/O during stop checked and option Configure all outputs to default.
MODBUS Symbol Slave/Server: To keep the protocol communicating when the CPU isn’t in RUN or after a breakpoint,

it’s need to check the option “Keep the communication running on CPU stop”.

5.9.2. Double Points

The input and output double digital points representation is done through a special data type called DBP (defined in the
LibDataTypes library). This type consist basically in a structure of two BOOL type elements, called OFF and ON (equivalent
to TRIP and CLOSE respectively).

In Nexto, variables of this type cannot be associated to digital input and output modules, being necessary the single digital
points mapping, BOOL type, and the treatment by application to conversion in double points.

To further information about the double points mapping in the input and output digital modules check the IEC 60870-5-104
Server section.

5.9.3. CPU’s Events Queue

The CPU owns an events queue of type FIFO (First In, First Out) used to store temporarily the events related to communi-
cation points until they are moved to their final destiny.

All communication points events generated in the CPU are directed and stored in CPU’s queue. This queue has the
following features:

103

5. CONFIGURATION

Size: 1000 events
Retentivity : it is not retentive
Overflow policy: keep the newests

ATTENTION

In the Nexto PLC, the events queue is stored in a non-retentive memory area (volatile). This
way, the events present in CPU’s queue, which haven’t been transmitted yet to the control
center, are going to be lost in a CPU’s eventual power off.

The CPU’s event queue is redundant, that means it is synchronized each cycle between both CPUs, when is used CPU’s
redundancy. Further information can be found on the section about CPU redundancy.

The in and out of events in this queue follows the concept of producer/consumer. Producers are those system elements
capable of generate events, adding events in the CPU’s queue, while the consumers are those system elements which receive
and use this events, taking them of the CPU’s queue. The figure below describes this working, including the example of some
events consumers and producers.

Figure 83: CPU’s Event Queue

5.9.3.1. Consumers

The consumers are typically communication drivers that will communicate with SCADA or HMI. After been stored in
CPU’s queue, the consumers receive the events related to communication points mapped in its configuration. These events are
then stored in a consumer’s own events queue, which the size and working are described on the communication driver specific
section.

104

5. CONFIGURATION

5.9.3.2. Queue Functioning Principles

Once stored in CPU’s queue, each event is transmitted to the consumer that has this communication point in its data base.
On the figure above, the Event 0 is referred to a communication point mapped to two control centers IEC 60870-5-104 (Client
1 and 2). Thus the Event 1 is referred to a communication point mapped only to one control center IEC 60870-5-104 (Client
2). By its time, the Event 2 is referred to a communication point mapped to another control center IEC 60870-5-104 (Client
3).

The events remain stored in the CPU’s queue until all its consumers acknowledge its receiving. The criteria used to confirm
the receive is specific of each consumer. In case of the IEC 60870-5-104 Server, the acknowledge occurs when the event is
transmitted to the IEC 60870-5-104 client.

In Nexto Series case, there are no diagnostics available to watch the CPU’s events queue occupation, not even information
about the queue overflow. However the consumers have a diagnostics group referred to its events queue. Further information
can be found at the specific driver communication section.

5.9.3.2.1. Overflow Sign

The overflow sign to the consumers’ events queue occurs in two situations:

When the consumer events queue is out of space to store new events
If the CPU aborted the event generation (because occurred to more events in a single execution cycle than the events
queue total size)

5.9.3.3. Producers

The producers are typically communication drivers or PLC internal elements that are capable to generate events. The
previous figure show some examples.

Internal Points: This is a PLC’s firmware internal element, which detects events each execution cycle (MainTask)
to those communication points that don’t have a defined origin and then inserts the events in the CPU’s queue. The
maximum number of events that can be detected in each MainTask cycle is equal to the CPU’s events queue size. In case
the number of generated events is bigger than this, in a single cycle, the exceeding are going to be lost.
MODBUS Driver (Client/Server/Master/Slave): The variables value change caused by MODBUS read/write are de-
tected at each MainTask cycle and then the events are inserted in CPU’s queue. In Client/Master cases, are also generated
quality events when there is a communication failure with the slave device.

5.9.4. Interception of Commands Coming from the Control Center

The Nexto PLC has a function block that allows selection commands and operation to the output points received by server
drivers (IEC 60870-5-104 Server) been treated by the user logic. This resource allows the interlocking implementation, as well
as the handling of the received command data in the user logic, or yet the command redirecting to different IEDs.

The commands interception is implemented by the CommandReceiver function block, defined in the LibRtuStandard. The
input and output parameters are described on the following tables:

105

5. CONFIGURATION

Parameter Type Description
bExec BOOL When TRUE, executes the command interception

bDone BOOL
Indicates that the command output data have been already
processed, releasing the function block to receive another
command

dwVariableAddr DWORD Variable address, mapped in the server driver, which will
receive the client command

eCommandResult ENUM

Input action defined by user from the following list:
SUCCESS(0)
NOT_SUPPORTED(1)
BLOCKED_BY_SWITCHING_HIERARCHY(2)
SELECT_FAILED(3)
INVALID_POSITION(4)
POSITION_REACHED(5)
PARAMETER_CHANGE_IN_EXECUTION(6)
STEP_LIMIT(7)
BLOCKED_BY_MODE(8)
BLOCKED_BY_PROCESS(9)
BLOCKED_BY_INTERLOCKING(10)
BLOCKED_BY_SYNNCHROCHECK(11)
COMMAND_ALREADY_IN_EXECUTION(12)
BLOCKED_BY_HEALTH (13)
ONE_OF_N_CONTROL(14)
ABORTION_BY_CANCEL(15)
TIME_LIMIT_OVER(16)
ABORTION_BY_TRIP(17)
OBJECT_NOT_SELECTED(18)
OBJECT_ALREADY_SELECTED(19)
NO_ACCESS_AUTHORITY(20)
ENDED_WITH_OVERSHOOT(21)
ABORTION_DUE_TO_DEVIATION(22)
ABORTION_BY_COMMUNICATION_LOSS(23)
BLOCKED_BY_COMAND(24)
NONE(25)
INCONSISTENT_PARAMETERS(26)
LOCKED_BY_OTHER_CLIENT(27)
HARDWARE_ERROR(28)
UNKNOWN(29)

dwTimeout DWORD Time-out [ms] to the treatment by user logic

Table 79: CommandReceiver Function Block Input Parameters

Notes:
bExec: When FALSE, the command just stop being intercepted for the user application, but it keeps being treated normally

by the server.
bDone: After the command interception, the user is going to be responsible for treat it. At the end of the treatment, this

input must be enabled for a new command can be received. Case this input is not enabled, the block is going to wait the time
defined in dwTimeout, to then become capable of intercept new commands.

eCommandResult: Treatment results of command intercepted by user. The result returned to the client that sent the
command, which must be attributed together with the input bDone, is converted to the protocol’s format from which was
received the command. In Nexto Series it is only supported the interception of commands coming from protocol IEC 60870-
5-104. In protocol interception, any return different from SUCCESS results in a negative Acknowledge.

106

5. CONFIGURATION

ATTENTION

It is not recommended the simultaneous commands interception to one same variable by two
or more CommandReceiver function blocks. Just one of the function blocks will intercept
correctly the command, being able to suffer undesirable interference from the others function
blocks if addressed to the same variable.

Parameter Type Description

bCommandAvailable BOOL Indicates that a command was intercepted and the data
are available to be processed

sCommand STRUCT

This structure stores received command data, which is
composed by the following fields:
eCommand
sSelectParameters
sOperateParameters
The description of each field is in this section.

eStatus ENUM
(TYPE_RESULT)

Out of function action from obtained result, according to
list:
OK_SUCCESS(0)
ERROR_FAILED(1)

Table 80: CommandReceiver Function Block Output Parameters

Note:
eStatus: Return of a register process of a communication point command interception. When the interception is regis-

tered with success OK_SUCCESS is returned, else ERROR_FAILED is. In case interceptor register failure, commands to the
determined point are not intercepted by this function block. TYPE_RESULT is defined in LibDataTypes library.

Supported commands are described on table below:

Parameter Type Description

eCommand ENUM
NO_COMMAND(0)
SELECT(1)
OPERATE(2)

Table 81: CommandReceiver Function Block Supported Commands

The parameters that build the sSelectParameters, sOperateParameters and sCancelParameters structures are described on
the following table:

Parameter Type Description

sSelectConfig STRUCT Received selection command configuration. This struc-
ture parameters are described on Table 83

sValue STRUCT
Received value in a select, when is received a selection
command with value. This structure parameters are de-
scribed on Table 86

Table 82: Parameters sSelectParameters

107

5. CONFIGURATION

Parameter Type Description

bSelectWithValue BOOL When true indicates a selection command reception with
value.

Table 83: Parameters sSelectConfig

Parameter Type Description

sOperateConfig STRUCT Received selection command configuration. This struc-
ture parameters are described on Table 85

sValue STRUCT Field of received operation command referred value. This
structure parameters are described on Table 86

Table 84: Parameters sOperateParameters

Parameter Type Description

bDirectOperate BOOL When true indicates that an operation command without
select was received.

bNoAcknowledgement BOOL When true indicates that a command, which doesn’t re-
quire the receiving acknowledge, was received.

bTimedOperate BOOL When true indicates that an operation command activated
by time was received.

liOperateTime LINT
Programming of the instant in which it must be runned
the command. This field is valid only when bTimedOper-
ate is true.

bTest BOOL When true indicates that the received command was sent
only for test, as so the command must not be runned.

Table 85: Parameters sOperateConfig

Parameter Type Description

eParamType ENUM

Informs the type of the received command:
NO_COMMAND(0)
SINGLE_POINT_COMMAND(1)
DOUBLE_POINT_COMMAND(2)
INTEGER_STATUS_COMMAND(3)
ENUMERATED_STATUS_COMMAND(4)
ANALOGUE_VALUE_COMMAND(5)

sSinglePoint STRUCT

When a command is received, in received command type
function, defined by eParamType, the corresponding data
structure is filled. This structures parameters are de-
scribed on Tables 87 to 91

sDoublePoint STRUCT
sIntegerStatus STRUCT
sEnumeratedStatus STRUCT
sAnalogueValue STRUCT

Table 86: Parameters sValue

108

5. CONFIGURATION

Parameter Type Description
bValue BOOL Point operation value.

sPulseConfig STRUCT
The pulsed command configuration parameters are stored
in this structure. This structure parameters are described
on Table 92.

Table 87: Parameters sSinglePoint

Parameter Type Description
bValue BOOL Point operation value.

sPulseConfig STRUCT
The pulsed command configuration parameters are stored
in this structure. This structure parameters are described
on Table 92.

Table 88: Parameters sDoublePoint

Parameter Type Description
diValue DINT Point operation value.

Table 89: Parameters sIntegerStatus

Parameter Type Description
dwValue DWORD Point operation value.

Table 90: Parameters sEnumeratedStatus

Parameter Type Description

eType ENUM
Informs the data type of the received analog value.
INTEGER (0)
FLOAT (1)

diValue DINT Point operation value, integer format.
fValue REAL Point operation value, float format.

Table 91: Parameters sAnalogueValue

Parameter Type Description
bPulseCommand BOOL When true indicates that received command is pulsed.

dwOnDuration DWORD This is time, in milliseconds, that the output must remain
on.

dwOffDuration DWORD This is time, in milliseconds, that the output must remain
off.

dwPulseCount DWORD Number of times the command must be executed.

Table 92: Parameters sPulseConfig

To intercept commands to a specific point, first it is need to load in the dwVariableAddr parameter the variable address cor-
respondent to the point wanted to intercept the commands and then execute a pulse in the bExec parameter. Once the command

109

5. CONFIGURATION

was intercepted, the function block informs that a command was intercepted through bCommandAvailable parameter. The
intercepted command information are then filled in the sCommand and eStatus output parameters, according to the received
command type. This operation depends only of the received command type, don’t matter the variable’s data type to which is
being intercepted the command. The interception is finished and then the function block can be released to intercept a new
command when bDone parameter is true. Yet must be pointed the command processing result in eCommandResult.

5.9.5. MODBUS RTU Master

This protocol is available for the Nexto Series CPUs in its serial channels. By selecting this option at MasterTool IEC XE,
the CPU becomes MODBUS communication master, allowing the access to other devices with the same protocol, when it is
in the execution mode (Run Mode).

There are two configuration modes for this protocol. One makes use of Direct Representation (%Q), in which the variables
are defined by its address. The other, called Symbolic Mapping has the variables defined by its name.

Regardless of the configuration mode, the steps to insert a protocol instance and configure the serial interface are the same.
The procedure to insert a protocol instance is found in detail in the MasterTool IEC XE User Manual - MU299609 or in the
section Inserting a Protocol Instance. The remaining configuration steps are described below for each mode.

Add the MODBUS RTU Master Protocol instance to the serial channel COM 1 or COM 2 (or both, in case of two
communication networks). To execute this procedure, see Inserting a Protocol Instance section.
Configure the serial interface, choosing the transmission speed, the RTS/CTS signals behavior, the parity, the channel
stop bits, among others configurations by a double click on the COM 1 or COM 2 serial channel. See Serial Interface
section.

5.9.5.1. MODBUS Master Protocol Configuration by Symbolic Mapping

To configure this protocol using symbolic mapping, you must perform the following steps:

Configure the general parameters of the MODBUS Master protocol, like: transmission delay times and minimum inter-
frame as in Figure 84.
Add and configure devices via the General Parameters tab, defining the slave address, communication time-out and
number of communication retries as can be seen in Figure 85.
Add and configure the MODBUS mappings on Mappings tab as Figure 86, specifying the variable name, data type, and
the data initial address, the data size and range are filled automatically.
Add and configure the MODBUS requests as presented in Figure 87, specifying the function, the scan time of the request,
the starting address (read/write), the data size (read/write) and generate diagnostic variables and disabling the request
via the buttons at the bottom of the window.

5.9.5.1.1. MODBUS Master Protocol General Parameters – Symbolic Mapping Configuration

The general parameters, found on the MODBUS protocol initial screen (figure below), are defined as:

Figure 84: MODBUS RTU Master Configuration Screen

110

5. CONFIGURATION

Configuration Description Default Options

Send Delay (ms) Delay for the answer transmis-
sion. 0 0 to 65535

Minimum Interframe (chars) Minimum silence time between
different frames. 3.5 3.5 to 100.0

Table 93: MODBUS RTU Master General Configurations

Notes:
Send Delay: The answer to a MODBUS protocol may cause problems in certain moments, as in the RS-485 interface or

other half-duplex. Sometimes there is a delay between the slave answer time and the physical line silence (slave delay to put
RTS in zero and put the RS-485 in high impedance state). To solve this problem, the master can wait the determined time in
this field before sending the new request. Otherwise, the first bytes transmitted by the master could be lost.

Minimum Interframe: The MODBUS standard defines this time as 3.5 characters, but this parameter is configurable in
order to attend the devices which do not follow the standard.

The MODBUS protocol diagnostics and commands configured, either by symbolic mapping or direct representation, are
stored in T_DIAG_MODBUS_RTU_MASTER_1 variables. For the direct representation mapping, they are also in 4 bytes and
8 words which are described in table below:

T_DIAG_MODBUS_RTU_MASTER_1.* Size Description
Diagnostic Bits:

tDiag.bRunning BIT The master is running.

tDiag.bNotRunning BIT The master is not running (see bit: bInterruptedBy-
Command).

tDiag.bInterruptedByCommand BIT The bit bNotRunning was enabled as the master was
interrupted by the user through command bits.

tDiag.bConfigFailure BIT Configuration failure.
tDiag.bModuleFailure BIT Not implemented.

Error codes:
0: there are no errors
1: invalid serial port
2: invalid serial port mode
3: invalid baud rate
4: invalid data bits
5: invalid parity
6: invalid stop bits
7: invalid modem signal parameter
8: invalid UART RX Threshold parameter
9: invalid time-out parameter
10: busy serial port
11: UART hardware error
12: remote hardware error

eErrorCode SERIAL_STATUS
(BYTE) 20: invalid transmission buffer size

21: invalid signal modem method
22: CTS time-out = true
23: CTS time-out = false
24: transmission time-out error
30: invalid reception buffer size
31: reception time-out error
32: flow control configured differently from manual
33: invalid flow control for the configured serial port
34: data reception not allowed in normal mode
35: data reception not allowed in extended mode
36: DCD interruption not allowed
37: CTS interruption not allowed
38: DSR interruption not allowed
39: serial port not configured
50: internal error in the serial port

Command bits, automatically initialized:
tCommand.bStop BIT Stop master.
tCommand.bRestart BIT Restart master.
tCommand.bResetCounter BIT Restart diagnostics statistics (counters).

111

5. CONFIGURATION

T_DIAG_MODBUS_RTU_MASTER_1.* Size Description
Communication Statistics:

tStat.wTXRequests WORD Counter of request transmitted by the master (0 to
65535).

tStat.wRXNormalResponses WORD Counter of normal responses received by the master (0
to 65535).

tStat.wRXExceptionResponses WORD Counter of responses with exception codes received by
the master (0 to 65535).

tStat.wRXIllegalResponses WORD
Counter of illegal responses received by master – in-
valid syntax, not enough received bytes, invalid CRC –
(0 to 65535).

tStat.wRXOverrunErrors WORD Counter of overrun errors during reception - UART
FIFO or RX line – (0 to 65535).

tStat.wRXIncompleteFrames WORD Counter of answers with construction errors, parity or
failure during reception (0 to 65535).

tStat.wCTSTimeOutErrors WORD Counter of CTS time-out error, using RTS/CTS hand-
shake, during transmission (0 to 65535).

Table 94: MODBUS RTU Master Diagnostics

Note:
Counters: All MODBUS RTU Master diagnostics counters return to zero when the limit value 65535 is exceeded.

5.9.5.1.2. Devices Configuration – Symbolic Mapping configuration

The devices configuration, shown on figure below, follows the following parameters:

Figure 85: Device General Parameters Settings

Configuration Description Default Options
Slave Address MODBUS slave address 1 0 to 255
Communication Time-out
(ms)

Defines the application level
time-out 3000 10 to 65535

Maximum Number of Retries
Defines the numbers of retries
before reporting a communica-
tion error

2 0 to 9

Table 95: Device Configurations

Notes:
Slave Address: According to the MODBUS standard, the valid slave addresses are from 0 to 247, where the addresses

from 248 to 255 are reserved. When the master sends a writing command with the address configured as zero, it is making
broadcast requests in the network.

Communication Time-out: The communication time-out is the time that the master waits for a response from the slave
to the request. For a MODBUS RTU master device it must be taken into account at least the following system variables: the
time it takes the slave to transmit the frame (according to the baud rate), the time the slave takes to process the request and the
response sending delay if configured in the slave. It is recommended that the time-out is equal to or greater than the time to
transmit the frame plus the delay of sending the response and twice the processing time of the request. For more information,
see Communication Performance section.

112

5. CONFIGURATION

Maximum number of retries: Sets the number of retries before reporting a communication error. For example, if the
slave does not respond to a request and the master is set to send three retries, the error counter number is incremented by one
unit when the execution of these three retries. After the increase of the communication error trying to process restarts and if
the number of retries is reached again, new error will increment the counter.

5.9.5.1.3. Mappings Configuration – Symbolic Mapping Settings

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

Figure 86: MODBUS Data Mappings Screen

113

5. CONFIGURATION

Configuration Description Default Options

Value Variable Symbolic variable name - Name of a variable declared in
a program or GVL

Data Type MODBUS data type -

Coil - Write (1 bit)
Coil - Read (1 bit)
Holding Register - Write (16
bits)
Holding Register - Read (16
bits)
Holding Register – Mask AND
(16 bits)
Holding Register – Mask OR
(16 bits)
Input Register (16 bits)
Input Status (1 bit)

Data Start Address Initial address of the MODBUS
data - 1 to 65536

Data Size Size of the MODBUS data - 1 to 65536

Data Range The address range of configured
data - -

Table 96: MODBUS Mappings Settings

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data type: this field is used to specify the data type used in the MODBUS relation.

Data Type Size [bits] Description
Coil - Write 1 Writing digital output.
Coil - Read 1 Reading digital output.

Holding Register - Write 16 Writing analog output.
Holding Register - Read 16 Reading analog output.

Holding Register - Mask AND 16 Analog output which can be read or written with AND mask.
Holding Register - Mask OR 16 Analog output which can be read or written with OR mask.

Input Register 16 Analog input which can be only read.
Input Status 1 Digital input which can be only read.

Table 97: Data Types Supported in MODBUS

Data Start Address: Data initial address of a MODBUS mapping.
Data Size: The size value specifies the maximum amount of data that a MODBUS interface can access, from the initial

address. Thus, to read a continuous address range, it is necessary that all addresses are declared in a single interface. This field
varies with the MODBUS data type configured.

Data Range: This field shows to the user the memory address range used by the MODBUS interface.

5.9.5.1.4. Requests Configuration – Symbolic Mapping Settings

The configuration of the MODBUS requests, viewed in figure below, follow the parameters described in table below:

Figure 87: Data Requests Screen MODBUS Master

114

5. CONFIGURATION

Configuration Description Default Value Options

Function Code MODBUS function type -

01 – Read Coils
02 – Read Input Status
03 – Read Holding Registers
04 – Read Input Registers
05 – Write Single Coil
06 – Write Single Register
15 – Write Multiple Coils
16 – Write Multiple Registers
22 – Mask Write Register
23 – Read/Write Multiple Reg-
isters

Polling (ms) Communication period (ms) 100 0 to 3600000

Read Data Start Address Initial address of the MODBUS
read data - 1 to 65536

Read Data Size Size of MODBUS Read data - Depends on the function used

Read Data Range MODBUS Read data address
range - 0 to 2147483646

Write Data Start Address Initial address of the MODBUS
write data - 1 to 65536

Write Data Size Size of MODBUS Write data - Depends on the function used

Write Data Range MODBUS Write data address
range - 0 to 2147483647

Diagnostic Variable Diagnostic variable name - Name of a variable declared in
a program or GVL

Disabling Variable Variable used to disable MOD-
BUS relation -

Field for symbolic variable
used to disable, individually,
MODBUS requests configured.
This variable must be of type
BOOL. The variable can be
simple or array element and can
be in structures.

Table 98: MODBUS Relations Configuration

Notes:
Setting: the number of factory default settings and the values for the column Options may vary according to the data type

and MODBUS function (FC).
Function Code: MODBUS (FC) functions available are the following:

Code
DEC HEX Description

1 0x01 Read Coils (FC 01)
2 0x02 Read Input Status (FC 02)
3 0x03 Read Holding Registers (FC 03)
4 0x04 Read Input Registers (FC 04)
5 0x05 Write Single Coil (FC 05)
6 0x06 Write Single Holding Register (FC 06)
15 0x0F Write Multiple Coils (FC 15)
16 0x10 Write Multiple Holding Registers (FC 16)
22 0x16 Mask Write Holding Register (FC 22)
23 0x17 Read/Write Multiple Holding Registers (FC 23)

Table 99: MODBUS Functions Supported by Nexto CPUs

Polling: this parameter indicates how often the communication set for this request must be performed. By the end of a
communication will be awaited a time equal to the value configured in the field polling and after that, a new communication
will be executed.

Read Data Start Address: field for the initial address of the MODBUS read data.
Read Data Size: the minimum value for the read data size is 1 and the maximum value depends on the MODBUS function

(FC) used as below:

115

5. CONFIGURATION

Read Coils (FC 01): 2000
Read Input Status (FC 02): 2000
Read Holding Registers (FC 03): 125
Read Input Registers (FC 04): 125
Read/Write Multiple Registers (FC 23): 121

Read Data Range: this field shows the MODBUS read data range configured for each request. The initial address, along
with the read data size will result in the range of read data for each request.

Write Data Start Address: field for the initial address of the MODBUS write data.
Write Data Size: the minimum value for the write data size is 1 and the maximum value depends on the MODBUS

function (FC) used as below:

Write Single Coil (FC 05): 1
Write Single Register (FC 06): 1
Write Multiple Coils (FC 15): 1968
Write Multiple Registers (FC 16): 123
Mask Write Register (FC 22): 1
Read/Write Multiple Registers (FC 23): 121

Write Data Range: this field shows the MODBUS write data range configured for each request. The initial address, along
with the read data size will result in the range of write data for each request.

Diagnostic Variable: The MODBUS request diagnostics configured by symbolic mapping or by direct representation, are
stored in variables of type T_DIAG_MODBUS_RTU_MAPPING_1 for Master devices and T_DIAG_MODBUS_ETH_CLIENT_1
for Client devices and the mapping by direct representation are in 4-byte and 2-word, which are described in Table 100.

T_DIAG_MODBUS_RTU_MAPPING_1.* Size Description
Communication Status Bits:

byStatus.bCommIdle BIT Communication idle (waiting to be executed).
byStatus.bCommExecuting BIT Active communication.

byStatus.bCommPostponed BIT

Communication deferred, because the maximum
number of concurrent requests was reached. De-
ferred communications will be carried out in the
same sequence in which they were ordered to avoid
indeterminacy. The time spent in this State is not
counted for the purposes of time-out. The bCom-
mIdle and bCommExecuting bits are false when the
bCommPostponed bit is true.

byStatus.bCommDisabled BIT Communication disabled. The bCommIdle bit is
restarted in this condition.

byStatus.bCommOk BIT Communication terminated previously was held
successfully.

byStatus.bCommError BIT Communication terminated previously had an error.
Check error code.

Last error code (enabled when bCommError = true):

eLastErrorCode MASTER_ERROR_CODE
(BYTE)

Informs the possible cause of the last error in the
MODBUS mapping. Consult Table 118 for further
details.

Last exception code received by master:
NO_EXCEPTION (0)
FUNCTION_NOT_SUPPORTED (1)
MAPPING_NOT_FOUND (2)

eLastExceptionCode MODBUS_EXCEPTION ILLEGAL_VALUE (3)
(BYTE) ACCESS_DENIED (128)*

MAPPING_DISABLED (129)*
IGNORE_FRAME (255)*

Communication statistics:

wCommCounter WORD

Communications counter terminated, with or with-
out errors. The user can test when communication
has finished testing the variation of this counter.
When the value 65535 is reached, the counter re-
turns to zero.

116

5. CONFIGURATION

T_DIAG_MODBUS_RTU_MAPPING_1.* Size Description

wCommErrorCounter WORD
Communications counter terminated with errors.
When the value 65535 is reached, the counter re-
turns to zero.

Table 100: MODBUS RTU Relations Diagnostics

Notes:
Exception Codes: The exception codes presented in this field are values returned by the slave. The definitions of the ex-

ception codes 128, 129 and 255 presented in the table are valid only when using Altus slaves. Slaves from other manufacturers
might use other definitions for each code.

Disabling Variable: variable of Boolean type used to disable, individually, MODBUS requests configured on request tab
via button at the bottom of the window. The request is disabled when the variable, corresponding to the request, is equal to 1,
otherwise the request is enabled.

Last Error Code: The codes for the possible situations that cause an error in the MODBUS communication can be
consulted below:

Code Enumerable Description

1 ERR_EXCEPTION Reply is in an exception code (see eLastExceptionCode = Ex-
ception Code).

2 ERR_CRC Reply with invalid CRC.

3 ERR_ADDRESS MODBUS address not found. The address that replied the re-
quest was different than expected.

4 ERR_FUNCTION Invalid function code. The reply’s function code was different
than expected.

5 ERR_FRAME_DATA_COUNT The amount of data in the reply was different than expected.
7 ERR_NOT_ECHO The reply is not an echo of the request (FC 05 and 06).
8 ERR_REFERENCE_NUMBER Invalid reference number (FC 15 and 16).
9 ERR_INVALID_FRAME_SIZE Reply shorter than expected.

20 ERR_CONNECTION Error while establishing connection.
21 ERR_SEND Error during transmission stage.
22 ERR_RECEIVE Error during reception stage.
40 ERR_CONNECTION_TIMEOUT Application level time-out during connection.
41 ERR_SEND_TIMEOUT Application level time-out during transmission.
42 ERR_RECEIVE_TIMEOUT Application level time-out while waiting for reply.
43 ERR_CTS_OFF_TIMEOUT Time-out while waiting CTS = false in transmission.
44 ERR_CTS_ON_TIMEOUT Time-out while waiting CTS = true in transmission.

128 NO_ERROR No error since startup.

Table 101: MODBUS Relations Error Codes

ATTENTION

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of a Master MODBUS RTU instance and any other MODBUS task will stop running
at the moment that it tries to perform a writing in a memory area. It occurs in order to keep
the consistency of the memory areas data while a MainTask is not running.

5.9.6. MODBUS RTU Slave

This protocol is available for the Nexto Series on its serial channels. At selecting this option in MasterTool IEC XE, the
CPU becomes a MODBUS communication slave, allowing the connection with MODBUS RTU master devices. This protocol
is available only in execution mode (Run Mode).

The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User Manual - MU299609.
The remaining configuration steps are described below for each mode:

Add the MODBUS RTU Slave Protocol instance to the serial channel. To execute this procedure see Inserting a Protocol
Instance section.
Configure the serial interface, choosing the communication speed, the RTS/CTS signals behavior, the parity, the stop
bits channel, among others. See Serial Interface section.

117

5. CONFIGURATION

5.9.6.1. MODBUS Slave Protocol Configuration via Symbolic Mapping

To configure this protocol using symbolic mapping, you must perform the following steps:

Configure the MODBUS slave protocol general parameters, as: slave address and communication times (available at the
Slave advanced configurations button).
Add and configure MODBUS relations, specifying the variable name, MODBUS data type and data initial address.
Automatically, the data size and range will be filled, in accordance to the variable type declared.

5.9.6.1.1. MODBUS Slave Protocol General Parameters – Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol initial screen (figure below), are defined as.

Figure 88: MODBUS RTU Slave Configuration Screen

Configuration Description Default Options
Slave Address MODBUS slave address 1 1 to 255

Table 102: Slave Configurations

The MODBUS slave protocol communication times, found in the Advanced... button on the configuration screen, are
divided in: Task Cycle, Send Delay and Minimum Interframe as shown in figure below and in table below.

Figure 89: Modbus Slave Advanced Configurations

Configuration Description Default Options

Task Cycle (ms)
Time for the instance execution
within the cycle, without con-
sidering its own execution time

50 20 to 100

Send Delay (ms) Delay for the transmission re-
sponse 0 0 to 65535

Minimum Interframe (chars) Minimum silence time between
different frames 3.5 3.5 to 100.0

118

5. CONFIGURATION

Configuration Description Default Options

Keep the communication run-
ning on CPU stop

Enable the MODBUS Symbol
Slave to run while the CPU is
in STOP or standing in a break-
point

Unchecked Checked or unchecked

Table 103: Modbus Slave Advanced Configurations

Notes:
Task Cycle: the user will have to be careful when changing this parameter as it interferes directly in the answer time, data

volume for scan and mainly in the CPU resources balance between communications and other tasks.
Send Delay: the answer to a MODBUS protocol may cause problems in certain moments, as in the RS-485 interface or

other half-duplex. Sometimes there is a delay between the time of the request from the master and the silence on the physical
line (slave delay to put RTS in zero and put the RS-485 in high impedance state). To solve this problem, the master can wait
the determined time in this field before sending the new request. On the opposite case, the first bytes transmitted by the master
could be lost.

Minimum Interframe: the MODBUS standard defines this time as 3.5 characters, but this parameter is configurable in
order to attend the devices which don’t follow the standard.

The MODBUS Slave protocol diagnostics and commands configured, either by symbolic mapping or direct representation,
are stored in T_DIAG_MODBUS_RTU_SLAVE_1 variables. For the direct representation mapping, they are also in 4 bytes and
8 words which are described in table below:

T_DIAG_MODBUS_RTU_SLAVE_1.* Size Description
Diagnostic Bits:

tDiag.bRunning BIT The slave is in execution mode.

tDiag.bNotRunning BIT The slave is not in execution (see bit: bInterruptedBy-
Command).

tDiag.bInterruptedByCommand BIT The bit bNotRunning was enabled as the slave was in-
terrupted by the user through command bits.

tDiag.bConfigFailure BIT Configuration failure.
tDiag.bModuleFailure BIT Not implemented.

Error codes:
0: there are no errors
1: invalid serial port
2: invalid serial port mode
3: invalid baud rate
4: invalid data bits
5: invalid parity
6: invalid stop bits
7: invalid modem signal parameter
8: invalid UART RX Threshold parameter
9: invalid time-out parameter
10: busy serial port
11: UART hardware error
12: remote hardware error

eErrorCode SERIAL_STATUS
(BYTE) 20: invalid transmission buffer size

21: invalid signal modem method
22: CTS time-out = true
23: CTS time-out = false
24: transmission time-out error
30: invalid reception buffer size
31: reception time-out error
32: flow control configured differently from manual
33: invalid flow control for the configured serial port
34: data reception not allowed in normal mode
35: data reception not allowed in extended mode
36: DCD interruption not allowed
37: CTS interruption not allowed
38: DSR interruption not allowed
39: serial port not configured
50: internal error in the serial port

Command bits, automatically initialized:

119

5. CONFIGURATION

T_DIAG_MODBUS_RTU_SLAVE_1.* Size Description
tCommand.bStop BIT Stop slave.
tCommand.bRestart BIT Restart slave.
tCommand.bResetCounter BIT Restart diagnostics statistics (counters).

Communication Statistics:

tStat.wRXRequests WORD
Counter of normal requests received by the slave and
answered normally. In case of a broadcast command,
this counter is incremented, but it is not transmitted (0
to 65535).

tStat.wTXExceptionResponses WORD
Counter of normal requests received by the slave and
answered with exception code. In case of a broadcast
command, this counter is incremented, but it isn’t trans-
mitted (0 to 65535).

tStat.wRXFrames WORD
Counter of frames received by the slave. It’s considered
a frame something which is processed and it is followed
by a Minimum Interframe Silence, in other words, an
illegal message is also computed (0 to 65535).

tStat.wRXIllegalRequests WORD
Illegal request counter. These are frames which start
with address 0 (broadcast) or with the MODBUS slave
address, but aren’t legal requests – invalid syntax,
smaller frames, invalid CRC – (0 to 65535).

tStat.wRXOverrunErrors WORD Counter of frames with overrun errors during reception
– UART FIFO or RX line – (0 to 65535).

tStat.wRXIncompleteFrames WORD Counter of frames with construction errors, parity or
failure during reception (0 to 65535).

tStat.wCTSTimeOutErrors WORD Counter of CTS time-out error, using the RTS/CTS
handshake, during the transmission (0 to 65535).

Table 104: MODBUS RTU Slave Diagnostic

Note:
Counters: all MODBUS RTU Slave diagnostics counters return to zero when the limit value 65535 is exceeded.

5.9.6.1.2. Configuration of the Relations – Symbolic Mapping Setting

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

Figure 90: MODBUS Data Mappings Screen

120

5. CONFIGURATION

Configuration Description Default Options

Value Variable Symbolic variable name - Name of a variable declared in
a program or GVL

Data Type MODBUS data type -
Coil
Input Status
Holding Register
Input Register

Data Start Address MODBUS data initial address - 1 to 65536

Absolute Data Start Address
Absolute initial address of
MODBUS data according to its
type

- -

Data Size MODBUS data size - 1 to 65536
Data Range Data address range configured - -

Table 105: MODBUS Mappings Configurations

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data Type: this field is used to specify the data type used in the MODBUS relation.

Data Type Size [bits] Description
Coil 1 Digital output that can be read or written.

Input Status 1 Digital input (read only).
Holding Register 16 Analog output that can be read or written.

Input Register 16 Analog input (read only).

Table 106: MODBUS data types supported by Nexto CPUs

Data Start Address: data initial address of the MODBUS relation.
Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can access from the initial

address. Thus, in order to read a continuous range of addresses, it is necessary that all addresses are declared in a single
relation. This field varies according to the configured type of MODBUS data.

Data Range: this field shows the user the memory address range used by the MODBUS relation.

ATTENTION

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of a MODBUS RTU Slave instance and any other MODBUS task will stop running
at the moment that it tries to perform a writing in a memory area. It occurs in order to keep
the consistency of the memory areas data while a MainTask is not running.

5.9.7. MODBUS Ethernet

The multi-master communication allows the Nexto CPUs to read or write MODBUS variables in other controllers or HMIs
compatible with the MODBUS TCP protocol or MODBUS RTU via TCP. The Nexto CPU can, at the same time, be client and
server in the same communication network, or even have more instances associated to the Ethernet interface. It does not matter
if they are MODBUS TCP or MODBUS RTU via TCP, as described on Table 75.

The figure below represents some of the communication possibilities using the MODBUS TCP protocol simultaneously
with the MODBUS RTU via TCP protocol.

121

5. CONFIGURATION

Figure 91: MODBUS TCP Communication Network

The association of MODBUS variables with CPU symbolic variables is made by the user through relations definition via
MasterTool IEC XE configuration tool. It’s possible to configure up to 32 relations for the server mode and up to 128 relations
for the client mode. The relations in client mode, on the other hand, must respect the data maximum size of a MODBUS
function: 125 registers (input registers or holding registers) or 2000 bits (coils or input status). This information is detailed in
the description of each protocol.

All relations, in client mode or server mode, can be disabled through direct representation variables (%Q) identified as
Disabling Variables by MasterTool IEC XE. The disabling may occur through general bits which affect all relations of an
operation mode, or through specific bits, affecting specific relations.

For the server mode relations, IP addresses clusters can be defined with writing and reading allowance, called filters. This
is made through the definition of an IP network address and of a subnet mask, resulting in a group of client IPs which can
read and write in the relation variables. Reading/writing functions are filtered, in other words, they cannot be requested by any
client, independent from the IP address. This information is detailed in the MODBUS Ethernet Server protocol.

When the MODBUS TCP protocol is used in the client mode, it’s possible to use the multiple requests feature, with the
same TCP connection to accelerate the communication with the servers. When this feature isn’t desired or isn’t supported by
the server, it can be disabled (relation level action). It is important to emphasize that the maximum number of TCP connections
between the client and server is 63. If some parameters are changed, inactive communications can be closed, which allows the
opening of new connections.

The tables below bring, respectively, the complete list of data and MODBUS functions supported by the Nexto CPUs.

122

5. CONFIGURATION

Data Type Size [bits] Description
Coil 1 Digital output that can be read or written.

Input Status 1 Digital input (read only).
Holding Register 16 Analog output that can be read or written.

Input Register 16 Analog input (read only).

Table 107: MODBUS data types supported by Nexto CPUs

Code
DEC HEX Description

1 0x01 Read Coils (FC 01)
2 0x02 Read Input Status (FC 02)
3 0x03 Read Holding Registers (FC 03)
4 0x04 Read Input Registers (FC 04)
5 0x05 Write Single Coil (FC 05)
6 0x06 Write Single Holding Register (FC 06)
15 0x0F Write Multiple Coils (FC 15)
16 0x10 Write Multiple Holding Registers (FC 16)
22 0x16 Mask Write Holding Register (FC 22)
23 0x17 Read/Write Multiple Holding Registers (FC 23)

Table 108: MODBUS Functions Supported by Nexto CPUs

Independent of the configuration mode, the steps to insert an instance of the protocol and configure the Ethernet interface
are equal. The remaining configuration steps are described below for each modality.

Add one or more instances of the MODBUS Ethernet client or server protocol to Ethernet channel. To perform this
procedure, refer to the section Inserting a Protocol Instance.
Configure the Ethernet interface. To perform this procedure, see section Ethernet Interface.

5.9.8. MODBUS Ethernet Client

This protocol is available for all Nexto Series CPUs on its Ethernet channels. When selecting this option at MasterTool
IEC XE, the CPU becomes a MODBUS communication client, allowing the access to other devices with the same protocol,
when it’s in execution mode (Run Mode).

The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User Manual – MU299609
or on Inserting a Protocol Instance section.

5.9.8.1. MODBUS Ethernet Client Configuration via Symbolic Mapping

To configure this protocol using Symbolic Mapping, it’s necessary to execute the following steps:

Configure the general parameters of MODBUS protocol client, with the Transmission Control Protocol (TCP) or RTU
via TCP.
Add and configure devices by setting IP address, port, address of the slave and time-out of communication (available on
the Advanced Settings button of the device).
Add and configure the MODBUS mappings, specifying the variable name, data type, data initial address, data size and
variable that will receive the quality data.
Add and configure the MODBUS request, specifying the desired function, the scan time of the request, the initial address
(read/write), the size of the data (read/write), the variable that will receive the data quality and the variable responsible
for disabling the request.

5.9.8.1.1. MODBUS Client Protocol General Parameters – Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol configuration initial screen (figure below), are defined as:

123

5. CONFIGURATION

Figure 92: MODBUS Client General Parameters Configuration Screen

Configuration Description Default Options
Connection Mode Protocol selection TCP RTU via TCP

TCP

Table 109: MODBUS Client General Configurations

The MODBUS Client protocol diagnostics and commands configured, either by symbolic mapping or direct representation,
are stored in T_DIAG_MODBUS_ETH_CLIENT_1 variables. For the direct representation mapping, they are also in 4 bytes
and 8 words which are described in table below:

T_DIAG_MODBUS_ETH_CLIENT_1.* Size Description
Diagnostic Bits:

tDiag.bRunning BIT The client is in execution mode.

tDiag.bNotRunning BIT The client is not in execution mode (see bit bInterrupt-
edByCommand).

tDiag.bInterruptedByCommand BIT The bit bNotRunning was enabled, as the client was in-
terrupted by the user through command bits.

tDiag.bConfigFailure BIT Configuration failure.

tDiag.bModuleFailure BIT Indicates if there is failure in the module or the module
is not present.

tDiag.bAllDevicesCommFailure BIT Indicates that all devices configured in the Client are in
failure.

Command bits, automatically initialized:
tCommand.bStop BIT Stop client.
tCommand.bRestart BIT Restart client.
tCommand.bResetCounter BIT Restart the diagnostic statistics (counters).

Communication Statistics:

tStat.wTXRequests WORD Counter of number of requests transmitted by the client
(0 to 65535).

tStat.wRXNormalResponses WORD Counter of normal answers received by the client (0 to
65535).

tStat.wRXExceptionResponses WORD Counter of answers with exception code (0 to 65535).

tStat.wRXIllegalResponses WORD
Counter of illegal answers received by the client – in-
valid syntax, invalid CRC or not enough bytes received
(0 to 65535).

Table 110: MODBUS Client Protocol Diagnostics

Note:
Counters: all MODBUS TCP Client diagnostics counters return to zero when the limit value 65535 is exceeded.

5.9.8.1.2. Device Configuration – Configuration via Symbolic Mapping

The devices configuration, shown on figure below, follows the following parameters:

124

5. CONFIGURATION

Figure 93: Device General Parameters Settings

Configuration Description Default Options
IP Address Server IP address 0.0.0.0 1.0.0.1 to 223.255.255.255
TCP Port TCP port 502 2 to 65534
Slave Address MODBUS Slave address 1 0 to 255

Table 111: MODBUS Client General Configurations

Notes:
IP Address: IP address of Modbus Server Device.
TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be

selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be
used. See table Reserved TCP/UDP ports.

Slave address: according to the MODBUS standard, the valid address range for slaves is 0 to 247, where addresses 248 to
255 are reserved. When the master sends a command of writing with the address set to zero, it is performing broadcast requests
on the network.

The parameters in the advanced settings of the MODBUS Client device, found on the button Advanced... in the General
Parameters tab are divided into: Maximum Simultaneous Requests, Communication Time-out, Mode of Connection Time-out
and Inactive Time.

Configuration Description Default Options

Maximum Simultaneous Re-
quest

Number of simultaneous re-
quest the client can ask from the
server

1 1 to 8

Communication Time-out
(ms)

Application level time-out in
ms 3000 10 to 65535

Mode
Defines when the connection
with the server finished by the
client

Connecting
stays open
while a time-
out does not
occur.

Connecting stays open while a
time-out does not occur.
Connection is closed at the end
of each communication.
Connection is closed after an
inactive time of (s): 10 to 3600.

Inactive Time (s) Inactivity time 10 3600

Table 112: MODBUS Client Advanced Configurations

Notes:
Maximum Simultaneous Requests: it is used with a high scan cycle. This parameter is fixed in 1 (not editable) when the

configured protocol is MODBUS RTU over TCP.
Communication Time-out: the Communication time-out is the time that the client will wait for a server response to the

request. For a MODBUS Client device, two variables of the system must be considered: the time the server takes to process
a request and the response sending delay in case it is set in the server. It is recommended that the time-out is equal or higher
than twice the sum of these parameters. For further information, check Communication Performance section.

Mode: defines when the connection with the server is finished by the client. Below follows the available options:

125

5. CONFIGURATION

Connecting stays open while a time-out does not occur or Connection is never closed in normal situations: Those options
presents the same behavior of Client, close the connection due non response of a request by the Server before reaching
the Communication Time-out.
Connection is closed at the end of each communication: The connection is closed by the Client after finish each request.
Connection is closed after an Inactive Time: The connection will be closed by the Client if it reach the Inactive Time
without performing a request to the Server.

Inactive Time: inactivity connection time.

5.9.8.1.3. Mappings Configuration – Configuration via Symbolic Mapping

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

Figure 94: MODBUS Data Type

126

5. CONFIGURATION

Configuration Description Default Options

Value Variable Symbolic variable name - Name of a variable declared in
a program or GVL

Data Type MODBUS data type -

Coil - Write (1 bit)
Coil - Read (1 bit)
Holding Register - Write (16
bits)
Holding Register - Read (16
bits)
Holding Register – Mask AND
(16 bits)
Holding Register – Mask OR
(16 bits)
Input Register (16 bits)
Input Status (1 bit)

Data Start Address Initial address of the MODBUS
data - 1 to 65536

Data Size Size of the MODBUS data - 1 to 65536

Data Range The address range of configured
data - -

Table 113: MODBUS Mappings Settings

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data type: this field is used to specify the data type used in the MODBUS relation.

Data Type Size [bits] Description
Coil - Write 1 Writing digital output.
Coil - Read 1 Reading digital output.

Holding Register - Write 16 Writing analog output.
Holding Register - Read 16 Reading analog output.

Holding Register - Mask AND 16 Analog output which can be read or written with AND mask.
Holding Register - Mask OR 16 Analog output which can be read or written with OR mask.

Input Register 16 Analog input which can be only read.
Input Status 1 Digital input which can be only read.

Table 114: Data Types Supported in MODBUS

Data Start Address: Data initial address of a MODBUS mapping.
Data Size: The size value specifies the maximum amount of data that a MODBUS interface can access, from the initial

address. Thus, to read a continuous address range, it is necessary that all addresses are declared in a single interface. This field
varies with the MODBUS data type configured.

Data Range: This field shows to the user the memory address range used by the MODBUS interface.

5.9.8.1.4. Requests Configuration – Configuration via Symbolic Mapping

The configuration of the MODBUS requests, viewed in figure below, follow the parameters described in table below:

Figure 95: MODBUS Data Request Screen

127

5. CONFIGURATION

Configuration Description Default Value Options

Function Code MODBUS function type -

01 – Read Coils
02 – Read Input Status
03 – Read Holding Registers
04 – Read Input Registers
05 – Write Single Coil
06 – Write Single Register
15 – Write Multiple Coils
16 – Write Multiple Registers
22 – Mask Write Register
23 – Read/Write Multiple Reg-
isters

Polling (ms) Communication period (ms) 100 0 to 3600000

Read Data Start Address Initial address of the MODBUS
read data - 1 to 65536

Read Data Size Size of MODBUS Read data - Depends on the function used

Read Data Range MODBUS Read data address
range - 0 to 2147483646

Write Data Start Address Initial address of the MODBUS
write data - 1 to 65536

Write Data Size Size of MODBUS Write data - Depends on the function used

Write Data Range MODBUS Write data address
range - 0 to 2147483647

Diagnostic Variable Diagnostic variable name - Name of a variable declared in
a program or GVL

Disabling Variable Variable used to disable MOD-
BUS relation -

Field for symbolic variable
used to disable, individually,
MODBUS requests configured.
This variable must be of type
BOOL. The variable can be
simple or array element and can
be in structures.

Table 115: MODBUS Relations Configuration

Notes:
Setting: the number of factory default settings and the values for the column Options may vary according to the data type

and MODBUS function (FC).
Function Code: MODBUS (FC) functions available are the following:

Code
DEC HEX Description

1 0x01 Read Coils (FC 01)
2 0x02 Read Input Status (FC 02)
3 0x03 Read Holding Registers (FC 03)
4 0x04 Read Input Registers (FC 04)
5 0x05 Write Single Coil (FC 05)
6 0x06 Write Single Holding Register (FC 06)
15 0x0F Write Multiple Coils (FC 15)
16 0x10 Write Multiple Holding Registers (FC 16)
22 0x16 Mask Write Holding Register (FC 22)
23 0x17 Read/Write Multiple Holding Registers (FC 23)

Table 116: MODBUS Functions Supported by Nexto CPUs

Polling: this parameter indicates how often the communication set for this request must be performed. By the end of a
communication will be awaited a time equal to the value configured in the field polling and after that, a new communication
will be executed.

Read Data Start Address: field for the initial address of the MODBUS read data.
Read Data Size: the minimum value for the read data size is 1 and the maximum value depends on the MODBUS function

(FC) used as below:

128

5. CONFIGURATION

Read Coils (FC 01): 2000
Read Input Status (FC 02): 2000
Read Holding Registers (FC 03): 125
Read Input Registers (FC 04): 125
Read/Write Multiple Registers (FC 23): 121

Read Data Range: this field shows the MODBUS read data range configured for each request. The initial address, along
with the read data size will result in the range of read data for each request.

Write Data Start Address: field for the initial address of the MODBUS write data.
Write Data Size: the minimum value for the write data size is 1 and the maximum value depends on the MODBUS

function (FC) used as below:

Write Single Coil (FC 05): 1
Write Single Register (FC 06): 1
Write Multiple Coils (FC 15): 1968
Write Multiple Registers (FC 16): 123
Mask Write Register (FC 22): 1
Read/Write Multiple Registers (FC 23): 121

Write Data Range: this field shows the MODBUS write data range configured for each request. The initial address, along
with the read data size will result in the range of write data for each request.

Diagnostic Variable: The MODBUS request diagnostics configured by symbolic mapping or by direct representation, are
stored in variables of type T_DIAG_MODBUS_RTU_MAPPING_1 for Master devices and T_DIAG_MODBUS_ETH_CLIENT_1
for Client devices and the mapping by direct representation are in 4-byte and 2-word, which are described in Table 100.

T_DIAG_MODBUS_ETH_MAPPING_1.* Size Description
Communication Status Bits:

byStatus.bCommIdle BIT Communication idle (waiting to be executed).
byStatus.bCommExecuting BIT Active communication.

byStatus.bCommPostponed BIT

Communication deferred, because the maximum
number of concurrent requests was reached. De-
ferred communications will be carried out in the
same sequence in which they were ordered to avoid
indeterminacy. The time spent in this State is not
counted for the purposes of time-out. The bCom-
mIdle and bCommExecuting bits are false when the
bCommPostponed bit is true.

byStatus.bCommDisabled BIT Communication disabled. The bCommIdle bit is
restarted in this condition.

byStatus.bCommOk BIT Communication terminated previously was held
successfully.

byStatus.bCommError BIT Communication terminated previously had an error.
Check error code.

byStatus.bCommAborted BIT Previously terminated communication was inter-
rupted due to connection failure.

Last error code (enabled when bCommError = true):

eLastErrorCode MASTER_ERROR_CODE
(BYTE)

Informs the possible cause of the last error in the
MODBUS mapping. Consult Table 118 for further
details.

Last exception code received by master:
NO_EXCEPTION (0)
FUNCTION_NOT_SUPPORTED (1)
MAPPING_NOT_FOUND (2)

eLastExceptionCode MODBUS_EXCEPTION ILLEGAL_VALUE (3)
(BYTE) ACCESS_DENIED (128)*

MAPPING_DISABLED (129)*
IGNORE_FRAME (255)*

Communication statistics:

wCommCounter WORD

Communications counter terminated, with or with-
out errors. The user can test when communication
has finished testing the variation of this counter.
When the value 65535 is reached, the counter re-
turns to zero.

129

5. CONFIGURATION

T_DIAG_MODBUS_ETH_MAPPING_1.* Size Description

wCommErrorCounter WORD
Communications counter terminated with errors.
When the value 65535 is reached, the counter re-
turns to zero.

Table 117: MODBUS Client Relations Diagnostics

Notes:
Exception Codes: the exception codes show in this filed is the server returned values. The definitions of the exception

codes 128, 129 and 255 are valid only with Altus slaves. For slaves from other manufacturers these exception codes can have
different meanings.

Disabling Variable: field for the variable used to disable MODBUS requests individually configured within requests. The
request is disabled when the variable, corresponding to the request, is equal to 1, otherwise the request is enabled.

Last Error Code: The codes for the possible situations that cause an error in the MODBUS communication can be
consulted below:

Code Enumerable Description

1 ERR_EXCEPTION Reply is in an exception code (see eLastExceptionCode = Ex-
ception Code).

2 ERR_CRC Reply with invalid CRC.

3 ERR_ADDRESS MODBUS address not found. The address that replied the re-
quest was different than expected.

4 ERR_FUNCTION Invalid function code. The reply’s function code was different
than expected.

5 ERR_FRAME_DATA_COUNT The amount of data in the reply was different than expected.
7 ERR_NOT_ECHO The reply is not an echo of the request (FC 05 and 06).
8 ERR_REFERENCE_NUMBER Invalid reference number (FC 15 and 16).
9 ERR_INVALID_FRAME_SIZE Reply shorter than expected.

20 ERR_CONNECTION Error while establishing connection.
21 ERR_SEND Error during transmission stage.
22 ERR_RECEIVE Error during reception stage.
40 ERR_CONNECTION_TIMEOUT Application level time-out during connection.
41 ERR_SEND_TIMEOUT Application level time-out during transmission.
42 ERR_RECEIVE_TIMEOUT Application level time-out while waiting for reply.
43 ERR_CTS_OFF_TIMEOUT Time-out while waiting CTS = false in transmission.
44 ERR_CTS_ON_TIMEOUT Time-out while waiting CTS = true in transmission.

128 NO_ERROR No error since startup.

Table 118: MODBUS Relations Error Codes

ATTENTION

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS Ethernet Client instance task or any other MODBUS task will stop being executed
at the moment it tries to write in the memory area. This occurs in order to maintain data
consistency of memory areas while MainTask is not running.

5.9.8.2. MODBUS Client Relation Start in Acyclic Form

To start a MODBUS Client relation in acyclic form, it is suggested the following method which can be implemented in a
simple way in the user application program:

Define the maximum polling time for the relations;
Keep the relation normally disabled;
Enable the relation at the moment the execution is desired;
Wait for the confirmation of the relation execution finishing and, at this moment, disable it again.

130

5. CONFIGURATION

5.9.9. MODBUS Ethernet Server

This protocol is available for all Nexto Series CPUs on its Ethernet channels. When selecting this option at MasterTool
IEC XE, the CPU becomes a MODBUS communication server, allowing the connection with MODBUS client devices. This
protocol is only available when the CPU is in execution mode (Run Mode).

The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User Manual – MU299609.

5.9.9.1. MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping

To configure this protocol using Symbolic Mappings, it is necessary to execute the following steps:

Configure the MODBUS server protocol general parameters, as: TCP port, protocol selection, IP filters for Reading
and Writing (available at the Filters Configuration button) and communication times (available at the Server Advanced
Configurations button).
Add and configure MODBUS mappings, specifying the variable name, data type, data initial address and data size.

The description of each configuration is related ahead in this section.

5.9.9.1.1. MODBUS Server Protocol General Parameters – Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol initial screen (figure below), are defined as.

Figure 96: MODBUS Server General Parameters Configuration Screen

Configuration Description Default Options
TCP Port TCP port 502 2 to 65534
Connection Mode Protocol selection TCP RTU via TCP

TCP

Table 119: MODBUS Server General Configurations

Notes:
TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be

selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be
used. See table Reserved TCP/UDP ports.

The settings present on the Filters... button, described in table below, are relative to the TCP communication filters:

Configuration Description Default Value Options

Write Filter IP Address
Specifies a range of IPs with
write access in the variables de-
clared in the MODBUS inter-
face.

0.0.0.0 0.0.0.0 to
255.255.255.255

Write Filter Mask
Specifies the subnet mask in
conjunction with the IP filter
parameter for writing.

0.0.0.0 0.0.0.0 to
255.255.255.255

131

5. CONFIGURATION

Configuration Description Default Value Options

Read Filter IP Address
Specifies a range of IPs with
read access in the variables de-
clared in the MODBUS inter-
face.

0.0.0.0 0.0.0.0 to
255.255.255.255

Read Filter Mask
Specifies the subnet mask in
conjunction with the IP filter
parameter for reading.

0.0.0.0 0.0.0.0 to
255.255.255.255

Table 120: IP Filters

Note:
Filters: filters are used to establish a range of IP addresses that have write or read access to MODBUS relations, being

individually configured. The permission criteria is accomplished through a logical AND operation between the Write Filter
Mask and the IP address of the client. If the result is the same as the Write Filter IP Address, the client is entitled to write. For
example, if the Write Filter IP Address = 192.168.15.0 and the Write Filter Mask = 255.255.255.0, then only customers with
IP address = 192.168.15.x shall be entitled. The same procedure is applied in the Read Filter parameters to define the read
rights.

The communication times of the MODBUS server protocol, found on the Advanced... button of the configuration screen,
are divided into: Task Cycle and Connection Inactivity Time-out.

Figure 97: MODBUS Server Advanced Settings Configuration Screen

Configuration Description Default Value Options

Task Cycle (ms)
Time for the instance execution
within the cycle, without con-
sidering its own execution time

50 5 to 100

Connection Inactivity Time-
out (s)

Maximum idle time between
client and server before the con-
nection is closed by the server

10 1 to 3600

Keep the communication run-
ning on CPU stop.

Enable the MODBUS Symbol
Slave to run while the CPU is
in STOP or after a breakpoint

Unmarked Marked or Unmarked

Allow Connections from Any
Interface

Enables connections through
any network interface, includ-
ing VPN

Unmarked Marked or Unmarked

Table 121: MODBUS Server Advanced Configurations

Notes:
Task Cycle: the user has to be careful when changing this parameter as it interferes directly in the answer time, data

volume for scanning and mainly in the CPU resources balance between communications and other tasks.
Connection Inactivity Time-out: this parameter was created in order to avoid that the maximum quantity of TCP con-

nections is reached, imagining that inactive connections remain open on account of the most different problems. It indicates
how long a connection (client or server) can remain open without being used (without exchanging communication messages).
If the specified time is not reached, the connection is closed releasing an input in the connection table.

132

5. CONFIGURATION

Allow Connections from Any Interface: When enabled, the MODBUS server will accept connections from any available
interface on the device, including VPN interfaces. When disabled, it will only accept connections on the interface where it is
instantiated. When enabling this option, ensure that no other protocol in the project uses the same port as the MODBUS server
to avoid communication conflicts.

5.9.9.1.2. MODBUS Server Diagnostics – Configuration via Symbolic Mapping

The diagnostics and commands of the MODBUS server protocol configured, either by symbolic mapping or by direct
representation, are stored in variables of type T_DIAG_MODBUS_ETH_SERVER_1 and the mapping by direct representation
are in 4-byte and 8-word, which are described in table below:

T_DIAG_MODBUS_ETH_SERVER_1.* Size Description
Diagnostic Bits:

tDiag.bRunning BIT The server is running.

tDiag.bNotRunning BIT The server is not running (see bit bInterruptedBy-
Command).

tDiag.bInterruptedByCommand BIT The bit bNotRunning was enabled, because the server
was interrupted by the user through the command bit.

tDiag.bConfigFailure BIT Configuration failure.

tDiag.bModuleFailure BIT Indicates if there is failure in the module or the module
is not present.

Command bits, automatically initialized:
tCommand.bStop BIT Stop the server.
tCommand.bRestart BIT Restart the server.
tCommand.bResetCounter BIT Reset diagnostics statistics (counters).

Communication Statistics:

tStat.wActiveConnections WORD Number of established connections between client and
server (0 to 64).

tStat.wTimeoutClosedConnections WORD
Connections counter, between the client and server, in-
terrupted after a period of inactivity - time-out (0 to
65535).

tStat.wClientClosedConnections WORD Connections counter interrupted due to customer re-
quest (0 to 65535).

tStat.wRXFrames WORD
Ethernet frames counter received by the server. An Eth-
ernet frame can contain more than one request (0 to
65535).

tStat.wRXRequests WORD Requests received by the server counter and answered
normally (0 to 65535).

tStat.wTXExceptionResponses WORD Requests received by the server counter and answered
with exception codes (0 to 65535).

tStat.wRXIllegalRequests WORD Illegal requests counter (0 to 65535).

Table 122: MODBUS Server Diagnostics

Note:
Counters: all counters of the MODBUS Ethernet Server Diagnostics return to zero when the limit value 65535 is exceeded.
bModuleFailure: Diagnosis implemented only for symbolic MODBUS.

5.9.9.1.3. Mapping Configuration – Configuration via Symbolic Mapping

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

Figure 98: MODBUS Server Data Mappings Screen

133

5. CONFIGURATION

Configuration Description Default Value Options

Value Variable Symbolic variable name - Name of a variable declared in
a program or GVL

Data Type MODBUS data type -
Coil
Input Status
Holding Register
Input Register

Data Start Address Starting address of the MOD-
BUS data - 1 to 65536

Absolute Data Start Address Start address of absolute data of
Modbus as its type - -

Data Size Size of the MODBUS data - 1 to 65536
Data Range Data range address configured - -

Table 123: MODBUS Ethernet Mappings Configuration

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data Type: this field is used to specify the data type used in the MODBUS relation.
Data Start Address: data initial address of the MODBUS relation.
Absolute Data Start Address: absolute start address of the MODBUS data according to their type. For example, the

Holding Register with address 5 has absolute address 400005. This field is read only and is available to assist in Client/Master
MODBUS configuration that will communicate with this device. The values depend on the base address (offset) of each data
type and allowed MODBUS address for each data type.

Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can access from the initial
address. Thus, in order to read a continuous range of addresses, it is necessary that all addresses are declared in a single
relation. This field varies according to the configured type of MODBUS data.

Data Range: is a read-only field and reports on the range of addresses that is being used by this mapping. It is formed by
the sum of the fields Data Start Address and Data Size. There can be no range overlays with others mappings of the same Data
Type.

ATTENTION

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS Ethernet Server instance task or any other MODBUS task will stop being exe-
cuted at the moment it tries to write in the memory area. This occurs in order to maintain
data consistency of memory areas while MainTask is not running.

5.9.10. OPC DA Server

It’s possible to communicate with the Nexto Series CPUs using the OPC DA (Open Platform Communications Data
Access) technology. This open communication platform was developed to be the standard in industrial communications.
Based on client/server architecture, it offers several advantages in project development and communication with automation
systems.

A very common analogy to describe the OPC DA technology is of a printer. When correctly connected, the computer needs
a driver to interface with the equipment. Similarly, the OPC helps with the interface between the supervision system and the
field data on the PLC.

When it comes to project development, to configure the communication and exchange information between the systems is
extremely simple using OPC DA technology. Using other drivers, based on addresses, it’s necessary to create tables to relate
tags from the supervision system with variables from the programmable controller. When the data areas are changed during
the project, it’s necessary to remap the variables and create new tables with the relations between the information on the PLC
with the Supervisory Control And Data Acquisition system (SCADA).

134

5. CONFIGURATION

Figure 99: OPC DA Architecture

The figure above shows an architecture to communicate a SCADA system and PLCs in automation projects. All the roles
present on a communication are explicit on this figure regardless of the equipment in which it’s executed, since they can be
done in the same equipment or in various ones. Each of the roles of this architecture are described on table below.

Role Description

Programmable Controllers and
Field Devices Level

The field devices and the PLCs are where the operation state and
plant control information are stored. The SCADA system ac-
cess the information on these devices and store on the SCADA
server, so that the SCADA clients can consult it during the plant
operation.

Acquisition Network
The acquisition network is where the requests for data collected
by field devices travel, to request the data collected from the
field devices.

Gateway for PLC Communica-
tion

A gateway enables the communication between the OPC DA
Server and Nexto Series PLCs. A gateway in the same sub-
net of the PLC is always necessary, as described in chapter
Communication Settings of MasterTool IEC XE User Manual
– MU299609.

OPC Server Module
The OPC DA Server is a Module responsible of receiving the
OPC DA requests and translate them to the communication with
the field devices.

135

5. CONFIGURATION

Role Description

Device Module OPC Client
The OPC Client Device module is responsible for the requests to
the OPC DA Server using the OPC DA protocol. The collected
data is stored on the SCADA Server database.

SCADA Server Level
The SCADA Server is responsible for connecting to the various
communication devices and store the data collected by them on
a database, so that it can be consulted by the SCADA Clients.

Supervision Network

The supervision network is the network through which the
SCADA Clients are connected to the SCADA Servers. In a
topology in which there aren’t multiple Client or where the
Server and the Client are installed on the same equipment, this
kind of network doesn’t exist.

SCADA Client Level

The SCADA Clients are responsible for requesting to the
SCADA Servers the necessary data to be shown in a screen
where the operation of a plant is being executed. Through then
it is possible to execute readings and writings on data stored on
the SCADA Server database.

Table 124: Roles Description on an OPC DA Server Architecture

The relation between the tags on the supervision system and the process data on the controller variables is totally trans-
parent. This means that, if there’s an alteration on the data areas through the development of the project, it isn’t necessary to
rework the relations between the information on the PLC and the SCADA, just use the new variable provided by the PLC on
the systems that request this data.

The use of OPC offers more productivity and connectivity with SCADA systems. It contributes with the reduction of
applications development time and with the maintenance costs. It even makes possible the insertion of new data on the
communication in a simplified form and with greater flexibility and interoperability between the automation system, due to the
fact that it’s an open standard.

The installation of the OPC DA Server is done altogether with MasterTool IEC XE installation, and its settings are done
inside the tool. It’s worth notice that the OPC is available only with the local Ethernet interface of the Nexto CPUs. The
Ethernet expansion modules do not support this functionality.

5.9.10.1. Creating a Project for OPC DA Communication

Unlike the communication with drivers such as MODBUS and PROFIBUS DP, to set an OPC DA communication it’s only
necessary to correctly set the node and indicate which variables will be used in the communication. There are two ways to
indicate which variables of the project will be available in the OPC DA Server. In both cases it’s necessary to add the object
Symbol Configuration to the application, in case it isn’t present. To add it, right-click over the object Application and select
the option.

ATTENTION

The variables shown in the objects IoConfig_Globals, IoConfig_Application_Mappings and
IoConfig_Global_Mappings are used internally for I/O control and shouldn’t be used by the
user.

ATTENTION

In addition to the variables declared at SFC language POUs, some implicitly created vari-
ables are also shown. To each step created, a type IecSfc.SFCStepType variable is created,
where the step states can be monitored, namely whether it is active or not and the time that
it’s active as in norm IEC 61131-1. To each transition, a BOOL type variable is created
that defines if the transition is true or false. These variables are shown in the object Symbol
Configuration that can be provided access to the OPC Client.

136

5. CONFIGURATION

Figure 100: Symbol Configuration Object

The table below presents the descriptions of the Symbol Configuration object screen fields.

Field Description
Symbols Variable identifier that will be provided to the OPC DA Server.

Access Rights

Indicates what the possible access right level are in the declared
symbol. When not utilized, this column remains empty, and the
access right level is maximum. Otherwise the access right level
can be modified by clicking over this field. The possible options
are:

Read only

Write only

Read and Write

Maximal

Indicates the maximum access right level that is possible to as-
sign to the variable. The symbols hold the same meanings from
the ones in Access Rights. It’s not possible to change it and it’s
indicated by the presence or not of the attribute ’symbol’

Attribute

Indicates if attribute ’symbol’ is being used when the variable is
declared. When not used, this column remains empty. For the
cases in which the attribute is used, the behavior is the follow-
ing:

attribute ’symbol’ := ’read’ the column shows

attribute ’symbol’ := ’write’ the column shows

attribute ’symbol’ := ’readwrite’ the column shows
Type Data type of the declared variable.

Members
When the data type is a Struct, a button is enabled in this col-
umn. Clicking on the button will allow the selection of which
elements of that struct will be provided to the OPC DA Server.

Comment

Variable comment, inserted on the POU or GVL where the vari-
able was declared. To show up as a variable comment here, the
comment must be entered one line before the variable on the
editor, while in text mode, or in the comment column when in
tabular mode.

Table 125: Symbol Configuration object screen fields description

When altering the project settings, such as adding or removing variables, it’s necessary to run the command Build, in order
to refresh the list of variables. This command must be executed until the message in Figure 100 disappear. After this, all
available variables in the project, whether they are declared on POUs, GVLs or diagnostics, will be shown here and can be
selected. The selected variables will be available on the OPC DA Server to be accessed by the Clients.

137

5. CONFIGURATION

Figure 101: Selecting Variables on the Symbol Configuration

After this procedure, the project must be loaded into a PLC so the variables will be available for communication with
the OPC DA Server. If the object Symbol Configuration screen is open and any of the variables, POUs or GVLs selected is
changed, its name will appear with the red color. The situations in which this may happen is when a variable is deleted or the
attribute value is modified.

It’s also possible to set which variables will be available on the OPC DA Server through an attribute inserted directly on
the POUs or GVLs where the variables are declared. When the attribute ’symbol’ is present on the variable declaration, and it
may be before the definition of the POU or GVL name, or to each variable individually, these variables are sent directly to the
object Symbol Configuration, with a symbol in the Attribute column. In this case it’s necessary, before loading the project into
the CPU, to run the command Build from within the object Symbol Configuration.

The valid syntaxes to use the attribute are:

attribute ’symbol’ := ’none’ – when the attribute value is ’none’, the variables won’t be available to the OPC DA Server
and won’t be shown in the object Symbol Configuration screen.
attribute ’symbol’ := ’read’ - when the attribute value is ’read’, the variables will be available to the OPC DA Server
with read only access right.
attribute ’symbol’ := ’write’ - when the attribute value is ’write’, the variables will be available to the OPC DA Server
with write only access right.
attribute ’symbol’ := ’readwrite’ – when the attribute value is ’readwrite’, the variables will be available to the OPC DA
Server with read and write access right.

In the following example of variable declaration, the variables A and B settings allow that an OPC DA Server access them
with read and write access. However the variable C cannot be accessed, while the variable D can be accessed with read only
access rights.

{attribute 'symbol' := 'readwrite'}
PROGRAM UserPrg
VAR
A: INT;
B: INT;
{attribute 'symbol' := 'none'}
C: INT;
{attribute 'symbol' := 'read'}
D :INT;
END_VAR

When a variable with a type different from the basic types is defined, the use of the attribute must be done inside the
declaration of this DUT and not only in the context in which the variable is created. For example, in the case of a DUT
instance inside of a POU or a GVL that has an attribute, it will not impact in the behavior of this DUT instance elements. It
will be necessary to apply the same access right level on the DUT declaration.

138

5. CONFIGURATION

ATTENTION

The configurations of the symbols that will be provided to the OPC DA Server are stored
inside the PLC project. By modifying these configurations it’s necessary to load the appli-
cation on the PLC so that it’s possible to access those variables.

ATTENTION

When a variable is removed from the project and loaded on the PLC unchecking it from the
object Symbol Configuration, the variable can no longer be read with the OPC Client. If the
variable is added again to the project, with the same name and same context, and inserted on
the object Symbol Configuration, it will be necessary to reboot the OPC Client to refresh the
variable address reference, which will be created on a different memory area of the PLC.

5.9.10.2. Configuring a PLC on the OPC DA Server

The configuration of the PLC is done inside MasterTool IEC XE through the option available in the Online. It’s necessary
to run MasterTool IEC XE as administrator.

Figure 102: OPC DA Server Settings

The Gateway Configuration is the same set in the Gateway used for the communication between the MasterTool IEC XE
and the PLC and described in Communication Settings, present in the MasterTool IEC XE User Manual – MU299609. If the
configuration used is localhost the Gateway Address must be filled with 127.0.0.1. This configuration is necessary because
the OPC DA Server uses the same communication gateway and the same protocol used for communication between PLC and
MasterTool IEC XE.

There’s the option Using the Gateway Embedded in PLC that can be selected when it’s desired to use the Gateway that is in
PLC itself. This option can be used to optimize the communication, since it prevent excess traffic through a particular station,
when more than one station with OPC Client is connected to the same PLC.

To configure the PLC, there are two possible configuration types, depending on the selection of the checkbox Use TCP/IP
Blockdriver. When the option isn’t selected, the field Device Name must be filled with the name of the PLC. This is the name
displayed by the PLC selected as active in the Communication Settings screen.

The other option is to use the IP Address of the Ethernet Interfaces. The same address set on the configuration screens must
be put in this field. Furthermore, when this method is used, the port number must be set to 11740. The confirmation will save
the OPC DA Server configurations.

139

5. CONFIGURATION

Device Configuration Description Default Set-
ting Options

Name

PLC description inside the
OPC DA Server configura-
tion file. This field can have
any name, but for organiza-
tional purposes, it’s recom-
mended to use the project
name that is loaded in the
PLC.

‘PLC01’

This field is a STRING and
it accepts alphanumeric (let-
ters and numbers) charac-
ters and the “_” character.
It’s not allowed to initiate
a STRING with numbers or
with “_”. It allows up to 49
characters.

Gateway Address

IP Address of the computer
that the OPC DA Server is
installed, for the cases in
which all PLCs are in the
same subnetwork. If there’s
some PLC that it’s in an-
other subnetwork, it must be
specified the Gateway used
in that subnetwork.

127.0.0.1 0.0.0.0 to 255.255.255.255

Gateway Port TCP Port for the connection
with the Gateway. 1217 2 to 65534

Device Name

It’s the PLC name displayed
in the Communication Set-
tings of the Device tab. The
name is the STRING before
the hexadecimal value that
is between []. Enabled
only when the checkbox Use
TCP/IP Blockdriver is not
selected.

‘0000’

This field is a STRING and
it accepts any characters,
as done in the PLC name
configuration in the Device
Communication Settings tab.
It allows up to 49 characters.

IP Address Active

IP address of the PLC. En-
abled only when the check-
box Use TCP/IP Block-
driver is selected. It is used
only when the setting is not
redundant.

192.168.15.1 0.0.0.0 to 255.255.255.255

IP Address PLC A

IP address of the PLC A. En-
abled only when the config-
uration is redundant. It is
the primary PLC address to
which the server will com-
municate if there is no fail-
ure.

192.168.15.69 0.0.0.0 to 255.255.255.255

IP Address PLC B

IP address of the PLC B. En-
abled only when the config-
uration is redundant. It is the
secondary PLC address to
which the server will com-
municate if a failure occurs.

192.168.15.70 0.0.0.0 to 255.255.255.255

Device Port

TCP Port. Enabled only
when the checkbox Use
TCP/IP Blockdriver is se-
lected.

11740 11740 or 11739

Table 126: Configuration Parameter of each PLC for the OPC DA Server

140

5. CONFIGURATION

When a new PLC needs to be configured on the OPC DA Server, simply press the New Device button and the configuration
will be created. When the setup screen is accessed, a list of all PLCs already configured on the OPC DA Server will be
displayed. Existing configurations can be edited by selecting the PLC in the Devices list and editing the parameters. The PLCs
settings that are no longer in use can be deleted. The maximum number of PLCs configured in an OPC DA Server is 16.

If the automation architecture used specifies that the OPC DA Server must be ran on a computer that does not execute
communication with the PLC via MasterTool IEC XE, the tool must be installed on this computer to allow OPC DA Server
configuration in the same way as done in other situations.

ATTENTION

To store the OPC DA Server configuration, the MasterTool IEC XE must be run with ad-
ministrator rights on the Operational System. Depending on the OS version, this privilege
must be done in the moment that the program is executed: right-click the MasterTool IEC
XE icon and choose Run as Administrator.

ATTENTION

The settings of a PLC on the OPC DA Server are not stored in the project created in Mas-
terTool IEC XE. For this reason, it can be performed with an open or closed project. The
settings are stored in a configuration file where the OPC DA Server is installed. When chang-
ing the settings, it is not required to load the application on the PLC, but depending on the
OPC Client it may be necessary to reconnect to the server or load the settings for the data to
be updated correctly.

5.9.10.2.1. Importing a Project Configuration

Using the button Read Project Configuration, as shown in Figure 102, you can assign the configuration of the open project
to the PLC configuration that is being edited. For this option to work correctly, there must be an open project and an Active
Path should be set as described in Communication Settings, present in the MasterTool IEC XE User Manual – MU299609. If
any of these conditions is not met an error message will be displayed and no data will be modified.

When the above conditions are valid, the PLC settings receive the parameters of the opened project. The IP Address and
Gateway Port information are configured as described in Communication Settings according to the Active Path. However, the
IP Address settings are read from NET 1 Ethernet interface settings. The port for connection to the PLC is always assigned in
this case as 11740.

5.9.10.3. OPC DA Communication Status and Quality Variables

For each PLC created in the OPC DA Server, status variables are generated, named _CommState and _CommStateOK. The
_CommState variable indicates the communication between the OPC and the PLC state. This state can interpreted by the OPC
Clients according to table below.

State Value Description

STATE_TERMINATE -1

If the communication between the OPC DA Server and
the OPC Client is terminated, this value will be returned.
When there’s more than one OPC Client simultaneously
connected, this return will occur on the disconnection of
the latter connected one. Besides the fact that this state
is in the variable, it’s value can’t be visualized because
it only changes when there’s no longer a connection with
the client.

STATE_PLC_NOT_CONNECTED 0

The PLC configured in the OPC DA Server is not con-
nected. It can happen if the configuration is incorrect
(wrong PLC and/or Gateway IP Address) or the PLC is
unavailable in that moment.

STATE_PLC_CONNECTED 1 The PLC configured in the OPC DA Server is connected.
This is a transitory state during the connection.

141

5. CONFIGURATION

State Value Description

STATE_NO_SYMBOLS 2

There are no symbols (variables) available in the PLC
configured in the OPC DA Server. It can happen when
there are no symbols or there isn’t a project loaded on the
PLC.

STATE_SYMBOLS_LOADED 3
Finished the process of reading the symbols (variables)
from the PLC configured in the OPC DA Server. This is
a transitory state during the connection.

STATE_RUNNING 4
After the reading of the symbols (variables) the OPC DA
Server is running the periodic update of the values of the
available symbols in each configured PLC.

STATE_DISCONNECT 5 There has been a disconnection with the PLC configured
in the OPC DA Server.

STATE_NO_CONFIGURATION 6

When the OPC configuration (stored in an OPCServer.ini
file) has a wrong syntax, the variable value will be this.
Generally, this behavior is not observed for the Master-
Tool IEC XE maintains this configuration valid.

Table 127: Description of the Communication states between OPC DA Server and the PLC

The _CommStateOK is a variable of the Bool type that indicates if the communication between the OPC DA Server and
the PLC is working. When the value is TRUE, it indicates that the communication is working correctly. If the value is FALSE,
for some reason it isn’t possible to communicate with the PLC.

In addition to monitoring the communication status, the OPC Client can access information on the quality of communi-
cation. The quality bits form a byte. They are divided into three groups of bits: Quality, Substatus and Limit. The bits are
distributed as follows QQSSSSLL, in which QQ are the Quality bits, SSSS Substatus bits and LL Limit bits. In this case the QQ
bits are the most significant in the byte, while the LL bits are the least significant.

QQ Bits values Definition Description

0 00SSSSLL Bad

The value read can’t be used be-
cause there’s some problem with
the connection. It’s possible to
monitor the value of _CommState
and diagnose the problem.

1 01SSSSLL Uncertain
The quality can’t be defined and
may be presented in the Substatus
field.

2 10SSSSLL NA This value is reserved and isn’t used
by the OPC standard.

3 11SSSSLL Good The quality is good and the value
read can be used.

Table 128: Description of the OPC Quality value

Table 128 presents the possible quality values. The OPC DA Server only returns Good and Bad Quality values. A OPC
Client can maintain the quality as Uncertain due to failures in which it can’t establish a connection to the Server. In case of
monitoring of the 8 quality bits directly from the OPC DA Server, the Substatus and Limit fields shall be null and the Good
Quality will be presented as the value 192 and the Bad Quality will be value 0.

142

5. CONFIGURATION

5.9.10.4. Limits of Communication with OPC DA Server

The table below presents the OPC DA Server configuration limits.

Maximum number of variables communicating with
a single PLC -

Maximum number of PLCs in an OPC DA Server 16
Maximum number of simultaneous connections of an
OPC DA Server in a single PLC 8

Table 129: OPC DA Server Communication Limits

Note:
Maximum number of variables communicating with a single PLC: There is no configuration limit. The maximum

possible number of variables depends on the processing capacity of the device.

ATTENTION

The Maximum number of simultaneous connections of an OPC DA Server in a single PLC
is shared with connections made with the MasterTool IEC XE. I.e. the sum of connections of
OPC DA Server and MasterTool IEC XE should not exceed the maximum quantity defined
in Table 129.

The communication between the OPC DA Server and the PLC uses the same protocol used in the MasterTool IEC XE
communication with the PLC. This protocol is only available for the Ethernet interfaces of the Nexto Series CPUs, it’s not
possible to establish this kind of communication with the Ethernet expansion modules.

When a communication between the OPC DA Server and the PLC is established, these two elements start a series of
transactions aimed at solving the addresses of each declared variables, optimizing the communication in data reading regime.
Besides, it’s also resolved in this stage the communication groups used by some Clients in order to optimize the communication.
This initial process demands some time and depends on the quantity of mapped variables and the processing capacity of the
device.

5.9.10.5. Accessing Data Through an OPC DA Client

After the configuration of the OPC DA Server, the available data on all PLCs can be accessed via an OPC Client. In the
configuration of the OPC Client, the name of the OPC DA Server must be selected. In this case the name is CoDeSys.OPC.DA.
The figure below shows the server selection on the client driver of the BluePlant SCADA software.

ATTENTION

The same way that in MasterTool IEC XE, some tools must be executed with administrator
privileges in the Operational System for the correct functioning of the OPC Client. Depend-
ing on the OS version, this privilege must be activated in the moment that the program is
executed. To do this, right-click MasterTool IEC XE icon and choose Run as Administrator.

143

5. CONFIGURATION

Figure 103: Selecting the OPC DA Server in the Client Configuration

In cases where the server is remotely located, it may be necessary to add the network path or IP address of the computer
in which the server is installed. In these cases, there are two configuration options. The first is to directly configure it, being
necessary to enable the COM/DCOM Windows Service. However, a simpler way is to use a tunneller tool that abstracts the
COM/DCOM settings, and enable a more secure communication between the Client and the Server. For more information on
this type of tool, refer to the NAP151 - Tunneller OPC.

Once the Client connects with the Server, it’s possible to use the TAGs import commands. These commands consult the
information declared in the PLC, returning a list with all the symbols available in it.

Figure 104: Symbols list consulted by the OPC Client

The list of selected variables will be included in the Client communication list and can be used, for example, in a SCADA
system screen.

144

5. CONFIGURATION

ATTENTION

The simulation mode of MasterTool IEC XE software can be used for OPC communication
tests. The information on how to configure it are presented in the Testing an OPC Commu-
nication using the Simulator section of the MasterTool IEC XE User Manual – MU299609.

5.9.11. OPC UA Server

The OPC UA protocol is an evolution of the OPC family. Independent of platform, it is designed to be the new standard
used in industrial communications.

Based on the client/server architecture, the OPC UA protocol offers numerous advantages in the development of design
and facilities in communication with the automation systems.

When it comes to project development, configuring communication and exchanging information between systems is ex-
tremely simple using OPC UA technology. Using other address-based drivers, it is necessary to create tables to relate the
supervision system tags and programmable controller variables. When data areas change during project development, it is
necessary to redo the mappings and new tables with the relationships between the PLC information and the SCADA system.

Figure 105: OPC UA Architecture

The figure above presents a typical architecture for SCADA system communication and PLCs in automation design. All
roles present in the communication are explicit in this figure regardless of where they are running, they may be on the same
equipment or on different equipment. Each of the roles of this architecture is described in table below.

145

5. CONFIGURATION

Role Description

Programmable Controllers and
Field Devices Level

The field devices and the PLCs are where the operation state and
plant control information are stored. The SCADA system ac-
cess the information on these devices and store on the SCADA
server, so that the SCADA clients can consult it during the plant
operation.

OPC UA Server Modules
The OPC UA Server is an internal module of the PLCs respon-
sible for receiving the OPC UA requests and translating them
for communication with the field devices.

Acquisition Network
The acquisition network is the network in which OPC UA mes-
sages travel to request the data that is collected from the PLCs
and field devices.

OPC Client Device Module

The OPC UA Client module, which is part of the SCADA
Server, is responsible for making requests to the OPC UA
Servers using the OPC UA protocol. The data collected by it
is stored in the SCADA Server database.

SCADA Server Level
The SCADA Server is responsible for connecting to the various
communication devices and store the data collected by them on
a database, so that it can be consulted by the SCADA Clients.

Supervision Network

The supervisory network is the network by which SCADA
Clients are connected to SCADA Servers, often using a propri-
etary SCADA system protocol. In a topology in which multiple
Clients are not used or the Server and Client are installed in the
same equipment, there is no such network, and in this case this
equipment must directly use the OPC UA protocol for commu-
nication with the PLC.

SCADA Client Level

The SCADA Clients are responsible for requesting to the
SCADA Servers the necessary data to be shown in a screen
where the operation of a plant is being executed. Through then
it is possible to execute readings and writings on data stored on
the SCADA Server database.

Table 130: Roles Description on an OPC UA Server Architecture

When using the OPC UA protocol, the relationship between the tags of the supervisory systems and the process data in
the controller variables is completely transparent. This means that if data areas change during project development, there is no
need to re-establish relationships between PLC information and SCADA. Simply use the new variable provided by the PLC in
the systems that request this data.

The use of OPC UA offers greater productivity and connectivity with SCADA systems. It contributes to reduced application
development time and maintenance costs. It also enables the insertion of new data in the communication in a simplified way
with greater flexibility and interoperability among the automation systems as it is an open standard.

It is worth noting that the OPC UA is only available on the local Ethernet interfaces of the Nexto CPUs. Ethernet expansion
modules do not support this functionality.

5.9.11.1. Creating a Project for OPC UA Communication

The steps for creating a project with OPC UA are very similar to the steps described in the section Creating a Project
for OPC DA Communication. As with the OPC DA protocol, the configuration of the OPC UA protocol is based on the
configuration of the Symbol Configuration. To enable the OPC UA, simply enable the Support OPC UA Features option in the
configuration, as shown in figure below.

146

5. CONFIGURATION

Figure 106: Symbol Configuration Object

ATTENTION

When enabling OPC UA protocol support, OPC DA protocol support is still enabled. You
can enable OPC UA and OPC DA communications at the same time to report the variables
configured on the Symbol Configuration object or via attributes.

Another way to access this configuration, once already created a project with the Symbol Configuration object, is given by
accessing the Settings menu of the configuration tab of the Symbol Configuration. Simply select the option Support OPC UA
features to enable support for the OPC UA protocol, as shown in figure below.

Figure 107: Enabling OPC UA in Object Symbol Configuration

After this procedure the project can be loaded into a PLC and the selected variables will be available for communication
with the OPC UA Server.

147

5. CONFIGURATION

5.9.11.2. Types of Supported Variables

This section defines the types of variables that support communication via the OPC UA protocol, when declared within
GVLs or POUs and selected in the Symbol Configuration object (see previous section).

The following types of simple variables are supported:

BOOL
SINT
USINT / BYTE
INT
UINT / WORD
DINT
UDINT / DWORD
LINT
ULINT / LWORD
REAL
LREAL
STRING
TIME
LTIME

You can also use structured types (STRUCTs or Function Blocks) created from previous simple types.
Finally, it is also possible to create arrays of simple types or of structured types.

5.9.11.3. Limit Connected Clients on the OPC UA Server

The maximum number of OPC UA clients connected simultaneously in a PLC is 8 (eight).

5.9.11.4. Limit of Communication Variables on the OPC UA Server

There is no configuration limit. The maximum possible number of variables depends on the processing capacity of the
device.

When a communication is established between the OPC UA Server and the PLC, these two elements initiate a series of
transactions that aim to solve the address of each declared variable, optimizing the communication in regime of reading of
data. In addition, at this stage, the classifications of the communication groups used by some Clients are also resolved in order
to optimize communication. This initial process takes some time and depends on the amount of variables mapped and the
processing capacity of the device.

5.9.11.5. Encryption Settings

If desired, the user can configure encryption for OPC UA communication using the Basic256SHA256 profile, for a secure
connection (cyber security).

To configure encryption on an OPC UA server, you must create a certificate for it using the following steps in the MasterTool
programmer:

1. Define an active path for communication with the controller (no login required);
2. From the View menu, select Security Screen;
3. Click the Devices tab on the left side of this screen;
4. Click the icon to perform a refresh;
5. Click on the Device icon, below which will open several certificates (Own Certificates, Trusted Certificates, Untrusted

Certificates, Quarantined Certificates);
6. Click the icon to generate a certificate and select the following parameters:

Key length (bit): 3072
Validity period (days): 365 (can be modified if desired)

7. Wait while the certificate is calculated and transferred to the controller (this may take a few minutes);
8. Reboot the controller.
9. On the OPC UA client, perform the necessary procedures to connect to the OPC UA server and generate a certificate

with the Basic256Sha256 profile (see specific OPC UA client manual for details);

148

5. CONFIGURATION

10. Back to MasterTool, click on the icon of the Security Screen to perform a refresh;
11. On the Security Screen, select the "Quarantined Certificates" folder under the Device. In the right panel you should

observe a certificate requested by the OPC UA client;
12. Drag this certificate to the folder "Trusted Certificates";
13. Proceed with the settings in the OPC UA client (see specific OPC UA client manual for details).

To remove encryption previously configured on a controller, you must do the following:
1. Define an active path for communication with the controller (no login required);
2. From menu View, select Security Screen;
3. Click on the Devices on the left side of this screen;
4. Click the icon to perform a refresh;
5. Click on the Device icon, below which will open several certificates (Own Certificates, Trusted Certificates, Untrusted

Certificates, Quarantined Certificates);
6. Click the folder "Own Certificates" and in the right panel select the certificate (OPC UA Server);
7. Click the icon to remove this project and driver certificate;
8. Reset (turn off and on) the controller.

5.9.11.6. Main Communication Parameters Adjusted in an OPC UA Client

Some OPC UA communication parameters are configured on the OPC UA client, and negotiated with the OPC UA server
at the time the connection between both is established. The following subsections describe the main OPC UA communication
parameters, their meaning, and care to select appropriate values for them.

In an OPC UA client it is possible to group the variables of a server into different subscriptions. Each subscription is a
set of variables that are reported in a single communication packet (PublishResponse) sent from the server to the client. The
selection of the variables that will compose each subscription is made in the OPC UA client.

ATTENTION

Grouping variables into multiple subscriptions is interesting for optimizing the processing
capacity and consumption of Ethernet communication bandwidth. Such aspects of optimiza-
tion are analyzed in greater depth in the OPC UA Server user manual MU214609, where
some rules for the composition of subscriptions are suggested. This user manual also dis-
cusses in more depth several concepts about the OPC UA protocol.

Some of the communication parameters described below must be defined for the server as a whole, others for each sub-
scription, and others for each variable that makes up a subscription.

5.9.11.6.1. Endpoint URL

This parameter defines the IP address and TCP port of the server, for example:
opc.tcp://192.168.17.2:4840
In this example, the IP address of the controller is 192.168.17.2.
The TCP port should always be 4840.

5.9.11.6.2. Publishing Interval (ms) e Sampling Interval (ms)

The Publishing Interval parameter (unit: milliseconds) must be set for each subscription.
The Sampling Interval parameter must be set for each variable (unit: milliseconds). However, in many OPC UA clients, the

Sampling Interval parameter can be defined for a subscription, being the same for all the variables grouped in the subscription.
Only the variables of a subscription whose values have been modified are reported to the client through a Publish Re-

sponse communication packet. The Publishing Interval parameter defines the minimum interval between consecutive Publish
Response packets of the same subscription, in order to limit the consumption of processing and Ethernet communication
bandwidth.

To find out which subscription variables have changed and are to be reported to the client in the next Publish Response
packet, the server must perform comparisons, and such (samplings) are performed by the same with the Sampling Interval. It
is recommended that the value of Sampling Interval varies between 50% and 100% of the value of the Publishing Interval,
because there is a relatively high processing consumption associated with the comparison process executed in each Sampling
Interval.

It can be said that the sum between Publishing Interval and Sampling Interval is the maximum delay between changing a
value on the server and the transmission of the Publish Response packet that reports this change. Half of this sum is the average
delay between changing a value on the server and the transmission of the Publish Response packet that reports this change.

149

5. CONFIGURATION

5.9.11.6.3. Lifetime Count e Keep-Alive Count

These two parameters must be configured for each subscription.
The purpose of these two parameters is to create a mechanism for deactivating a subscription on the initiative of the

server, in case it does not receive customer’s PublishRequest communication packets for this subscription for a long time.
PublishRequest packets must be received by the server so that it can broadcast Publish Response packets containing the
subscription variables that have changed their values.

If the server does not receive PublishRequest packets for a time greater than Lifetime Count multiplied by Publishing
Interval, the server deactivates the subscription, which must be re-created by the client in the future if desired.

In situations where the variables of a subscription do not change, it could be a long time without the transmission of
PublishResponses and consequently PublishRequests that succeed, causing an undesired deactivation of the subscription. To
prevent this from happening, the Keep-Alive Count parameter was created. If there are no subscription data changes for a
time equal to Keep-Alive Count multiplied by Publishing Interval, the server will send a small empty Publish Response packet
indicating that no variable has changed. This empty Publish Response will authorize the client to immediately send the next
PublishRequest.

The Keep-Alive Count value must be less than the Lifetime Count value to prevent unwanted deactivation of the subscrip-
tion. It is suggested that LifeTime Count be at least 3 times larger than Keep-Alive Count.

5.9.11.6.4. Queue Size e Discard Oldest

These parameters must be maintained with the following fixed values, which are usually the default values on the clients:

Queue Size: 1
Discard Oldest: enable

According to the OPC UA standard, it is possible to define these parameters for each variable. However, many clients
allow you to define common values for all variables configured in a subscription.

Queue Size must be retained with value 1 because there is no event support in this implementation of the OPC UA server,
so it is unnecessary to define a queue. Increasing the value of Queue Size may imply increase communication bandwidth and
CPU processing, and this should be avoided.

Discard Oldest must be maintained with the enable value, so that the Publish Response package always reports the most
recent change of value detected for each variable.

5.9.11.6.5. Filter Type e Deadband Type

These parameters must be maintained with the following fixed values, which are usually the default values in the clients:

Filter Type: DataChangeFilter
Deadband Type: none

According to the OPC UA standard, it is possible to define these parameters for each variable. However, many clients
allow you to define common values for all variables configured in a subscription.

The Filter Type parameter must be of DataChangeFilter, indicating that value changes in the variables should cause it to
be transmitted in a Publish Response package.

Deadband Type should be kept in “none” because there is no implementation of deadbands for analog variables. In this
way, any change of the analog variable, however minimal, causes its transmission in a Publish Response package.

To reduce processing power and Ethernet communication bandwidth, you can deploy deadbands on your own as follows:

Do not include the analog variable in a subscription;
Instead, include in a subscription an auxiliary variable linked to the analog variable;
Copy the analog variable to the auxiliary variable only when the user-managed deadband is extrapolated.

5.9.11.6.6. PublishingEnabled, MaxNotificationsPerPublish e Priority

It is suggested that the following parameters be maintained with the following values, which are usually the default values
in the clients:

PublishingEnabled: true
MaxNotificationsPerPublish: 0
Priority: 0

150

5. CONFIGURATION

These parameters must be configured for each subscription.
PublishingEnable must be “true” so that the subscription variables are reported in case of change of value.
MaxNotificationsPerPublish indicates how many of the variables that have changed value can be included in the same

Publish Response package. The special value “0” indicates that there is no limit to this, and it is recommended to use this
value so that all changed variables are reported in the same Publish Response package.

Priority indicates the relative priority of this subscription over others. If at any given moment the server should send
multiple Publish Response packages of different subscriptions, it will prioritize the one with the highest value of priority. If all
subscriptions have the same priority, Publish Response packets will be transmitted in a fixed sequence.

5.9.11.7. Accessing Data Through an OPC UA Client

After configuration of the OPC UA Server the data available in all PLCs can be accessed via a Client OPC UA. In the
configuration of the OPC UA Client, the address of the correct OPC UA Server must be selected. In this case the address
opc.tcp://ip-address-of-device:4840. The figure below shows the server selection in the SCADA BluePlant client software
driver.

ATTENTION

Like MasterTool IEC XE, some tools need to be run with administrator rights on the Op-
erating System for the correct operation of the OPC UA Client. Depending on the version
of the Operating System this right must be authorized when running the program. For this
operation right click on the tool executable and choose the option Run as administrator.

Figure 108: Selecting OPC UA Server in Client Configuration

Once the Client connects to the Server, TAG import commands can be used. These commands query information declared
in the PLC, returning a list with all the symbols made available by the PLC.

151

5. CONFIGURATION

Figure 109: List of Symbols Browsed by OPC UA

The list of selected variables will be included in the Client’s communications list and can be used, for example, in screens
of a SCADA system.

5.9.12. EtherCAT Master

EtherCAT (Ethernet Control Automation Technology) is a master-slave architecture protocol with high performance, for
deterministic Ethernet, that allows real time performance as it updates 1000 distributed I/O in 30 µS or 100 servomotors axis
each 100 µS using twisted pair cables or optic fiber. Besides, it supports flexible topology, allowing for line, tree and/or star
connections.

An Ethernet frame can be processed in real time instead of being received, interpreted and copied as process data in each
connection. The FMMU (Fieldbus Memory Management Unit) in each Slave node reads the data that are addressed to it at
the same time that the telegram is forwarded to the next device. In a similar way, the input data are inserted as the telegram
is passed. Because of this, the frames are delayed just a few nanoseconds. Access on the Ethernet terminals can be made in
any order as the data sequence is independent of the physical order. It can perform Broadcast, Multicast and between slaves
communications.

The EtherCAT protocol allows a precise synchronization, that is required, for example, in applications where several axis
simultaneously perform coordinated movements, it can be done through an exact adjust of the Distributed Clock. There’s also
the possibility to configure devices that, as opposed to synchronous communication, have an elevated tolerance degree inside
the communication system.

The configuration of EtherCAT modules is initially determined by the Device Description Files of the Master and Slave
devices used, and can be modified by the user in the Configuration Editor dialog boxes. However, for conventional applications
and with the desire of an as easy as possible manipulation, large-scale configurations can be automated by choosing the
Autoconfig mode in EtherCAT Master - General.

Note the possibility of modifying the Master and Slave configuration parameters also in operational mode, through the
Master and Slave instances, according to the availability of the device in question.

5.9.12.1. Installing and inserting EtherCAT Devices

In order to be able to insert and configure EtherCAT devices as objects in the device tree, the Slave devices must be
installed.

The Master device is automatically installed by the default MasterTool IEC XE installation. The EtherCAT Master defines
which Slaves can be inserted.

To install the Slave devices the Device Repository must be opened, use the EtherCAT XML Device description Config-
uration File (*.xml) filter and select the device description files (EtherCAT XML Device Description / ESI EtherCAT Slave
Information), supplied with the hardware. The Slave descriptions are available as XML files (file type: *.xml).

An EtherCAT Master can be added to the Devices Tree through the Add Device command, through the context menu of the
CPU NET connectors.

Under a master, one or more slaves can be added, selecting an EtherCAT Master and running the Add Device command
(context menu of the EtherCAT Master) or running the Scan For Devices command.

152

5. CONFIGURATION

Figure 110: EtherCAT Configuration Example

ATTENTION

- Only one EtherCAT Master instance per project is allowed.
- Only available on the NET connectors of the PLC.
- It cannot be used when the NETs are set as redundant.
- It cannot be used when Project has cluster redundancy.
- Other drivers cannot be instanced in the same NET port as the EtherCAT Master.

5.9.12.1.1. EtherCAT - Scan Devices

The Scan For Devices command, available in the EtherCAT Master context menu, runs a search for the Slave devices
physically installed in the EtherCAT network of the PLC currently connected. This means that with this command it’s possible
to detect and visualize the hardware components in the window presented in the figure below, allowing the user to map them
directly in the project Device Tree do projeto.

It’s noteworthy that, when the Scan For Devices command is selected, a connection with the PLC will be automatically
established before the search begins and terminated when the search ends. So, for the first execution of this command, the
Gateway connection must be configured and a program with the EtherCAT Master configured must be loaded into the PLC. In
case of future additions of Slave devices, in order to run this command, it’s necessary that the EtherCAT network is stopped.
To do this, put to TRUE the bStopBus bit, present in the variables of the EtherCAT Master Diagnostics.

When the command is executed, the Scanned Devices field will contain a list of all devices and modules found during the
last scan. To add them to the project, just click on the button Copy All Devices To Project. It’s also possible to perform a
comparison of the devices found in the search with the ones in the project by selecting the box Show differences to project.

If you add an EtherCAT Master module to the Project and use the Scan For Devices command, you will have a list of all
the available EtherCAT Slaves. Entries in bold will be shown, if there’s more than one device with the same description. With
a double click on the entrance a list will open, and so the desired device can be selected.

After completing the changes in the EtherCAT network configuration, it’s necessary to do a new project download, for the
changes to take effect.

Figure 111: EtherCAT Devices Search Dialog

153

5. CONFIGURATION

5.9.12.2. EtherCAT Master Settings

Below are listed the options to carry out the EtherCAT Master configuration, such as defined in Device Description File.

5.9.12.2.1. EtherCAT Master - General

Below are the general parameters found in the initial screen of the EtherCAT Master configuration, according figure below.

Figure 112: EtherCAT Master Configuration Dialog

Device Configuration Description Factory De-
fault Possible Values

Autoconfig master/slaves Enable the Master and Slave
automatic configuration. Marked Marked

Unmarked

Cycle time [µs]
Sets the time period in
which a new data telegram
must be send to the bus.

4000 2000 to 1000000

Sync Offset [%]

Adjust the offset, from the
PLC cycle, of the EtherCAT
Slave synchronization inter-
rupt.

20 -50 to 50

Sync window monitoring
If enabled, this option al-
lows monitoring the Slave
synchronization.

Unmarked Marked
Unmarked

Sync window [µs] Time for the Sync Window
Monitoring. 1 1 to 32768

Use LRW instead of
LWR/LRD

Enabling of the combined
read and write commands. Unmarked Marked

Unmarked

Messages per task

If enabled, the read and
write commands that are
dealing with input and out-
put messages can be done in
different tasks.

Unmarked Marked
Unmarked

154

5. CONFIGURATION

Device Configuration Description Factory De-
fault Possible Values

Automatic restart slaves Restart the devices when the
communication is aborted. Marked Marked

Unmarked

Table 131: EtherCAT Master Configuration

Notes:
Autoconfig master/slaves: If this option is enabled, most of Master and Slave configuration will be made automatically,

based on the description files and implicit calculations. In this case, the FMMU / Sync dialog will not be available. If it’s
unchecked the Image In Address and Image Out Address options will be available to the user.

ATTENTION

The Autoconfig mode is enabled by default and usually enough and highly recommended
for standard applications. If it’s disabled, all configuration definitions will have to be made
manually, and thus, some specialized knowledge is required. To configure a Slave-to-Slave
communication, the Autoconfig option must be disabled.

Cycle time: Time period after which, a new data telegram must be sent to the bus. If Distributed Clock functionality is
enabled, the value of this parameter will be transferred to the Slaves clocks. This way, a precise data exchange synchronization
can be achieved, which is especially important in cases where the distributed process demands simultaneous actions. So, a
very precise time base, with a jitter significantly smaller than a microsecond, for all the network can be achieved.

Sync Offset: This value allows the adjustment of the offset of the EtherCAT Slave synchronization interrupt to the PLC
cycle. Normally, the PLC task cycle begins 20% later than the Slaves synchronization interruption. This means that the PLC
task can be delayed by 80% of the cycle time and no message will be lost.

Sync Window: If the synchronization of all Slaves are inside this time window, the EtherCAT Master bDistributed-
ClockInSync diagnostic will be set to TRUE, otherwise it will be set to FALSE. When Distributed Clock is used, it’s highly
recommended to use a dedicated task with high priority as the Bus cycle task of the EtherCAT Master. To do this, it’s necessary
to use Project Profiles that allows the creation of new tasks, then create a cyclic task with priority 0 (real time task) and link
it to the master Bus cycle task on the EtherCAT Master - I/O Mapping tab of the EtherCAT Master. The user can also change
the value of the wDCInSyncWindow variable, configuring the maximum jitter allowed on the synchronization between master
and slaves.

Use LRW instead of LWR/LRD: Activating this option enables the Slave-to-Slave communication because, instead of
using separated reading (LRD) and write (LWR) commands, combined reading/writing (LRW) commands will be used.

Automatic Restart Slaves: By enabling this option, the Master will restart the Slaves as soon as the communication is
aborted.

5.9.12.2.2. EtherCAT Master - Sync Unit Assignment

This tab of the EtherCAT Master configuration editor shows all slaves that are entered below a specific master with an
assignment to the sync units.

With EtherCAT sync units, multiple slaves are configured into groups and subdivided into smaller units. For each group,
the job counter can be monitored for better and more accurate error detection. As soon as a slave is missing from a group of
synchronization units, the other slaves in the group are also shown as missing. Detection occurs immediately on the next bus
cycle because the job counter is checked continuously. With device diagnostics, the missing group can be remedied as quickly
as possible.

Unaffected groups remain operable without any interference.

5.9.12.2.3. EtherCAT Master - Overview

This tab of the EtherCAT Master configuration editor provides an overview of the states of all slaves, which are entered
below this master and have an address. Modules are not displayed.

5.9.12.2.4. EtherCAT Master - I/O Mapping

This EtherCAT Master configuration editor tab offers the possibility to change the task that will be used for bus updates.

155

5. CONFIGURATION

5.9.12.2.5. EtherCAT Master - IEC Objects

This tab of the EtherCAT Master configuration editor lists objects that allow access to the device from the IEC application.
In online mode, this is used for monitoring.

5.9.12.2.6. EtherCAT Master - Status / Information Tabs

The Status tab of the EtherCAT Master configuration editor provides status information (e.g. ’Running’, ’Stopped’) and
diagnostic messages specific of the device and the internal bus system.

The Information tab, present on the EtherCAT Master configuration editor, shows, if available, the following general
information about the module: Name, Vendor, Type, Version Number, Category, Order Number, Description, Image.

5.9.12.3. EtherCAT Slave Configuration

Below are listed the main EtherCAT Slave configuration options, as defined in the Device Description File.

5.9.12.3.1. EtherCAT Slave - General

Below are presented the general parameters found in EtherCAT Slave configuration initial screen. This field is only avail-
able if the Autoconfig mode (Master) isn’t enabled.

Figure 113: EtherCAT Slave Configuration Dialog

156

5. CONFIGURATION

Device Configuration Description Default
Value Options

AutoInc Address
Auto incremental Address
(16-bit) defined by the Slave
position in the network.

- -65535 to 0

EtherCAT Address

Slave final address, assign
by the Master during startup.
This address is independent
from the position in the net-
work.

- 1 to 65535

Expert settings Enable the Slave advanced
Settings options. Unmarked Marked

Unmarked

Optional Declare the Slave as Op-
tional. Unmarked Marked

Unmarked

Select DC
Show all Distributed Clock
configurations provided by
the device description file.

- -

Enable Distributed Clock Enable the Distributed
Clock configuration options. Unmarked Marked

Unmarked

Sync Unit Cycle [µs] Show the Cycle Time set in
Master. 100000 2000 to 1000000

Enable (Sync 0) Enable the Sync 0 synchro-
nization unit configurations. Unmarked Marked

Unmarked

Sync Unit Cycle (Sync 0)

By selecting this option, the
Cycle Time will be deter-
mined by the product of the
factor and the Sync Unit Cy-
cle.

Unmarked Marked
Unmarked

User Defined (Sync 0)

If this option is selected, the
desired time, in microsec-
onds, can be directly set into
the Cycle Time (µs) field.

Unmarked Marked
Unmarked

Cycle Time [µs] (Sync 0) Show the cycle time cur-
rently set. 100000 1 to 2147483647

Shift Time [µs] (Sync 0)

Time between the sync
events and the “Output
Valid” or “Input Latch”
time.

0 -2147483648 to
2147483647

Enable (Sync 1) Enable the Sync 1 synchro-
nization unit configurations. Unmarked Marked

Unmarked

Sync Unit Cycle (Sync 1)

By selecting this option, the
Cycle Time will be deter-
mined by the product of the
factor and the Sync Unit Cy-
cle.

Unmarked Marked
Unmarked

User Defined (Sync 1)

If this option is selected, the
desired time, in microsec-
onds, can be directly set into
the Cycle Time (µs) field.

Unmarked Marked
Unmarked

Cycle Time [µs] (Sync 1) Show the cycle time cur-
rently set. 100000 1 to 2147483647

157

5. CONFIGURATION

Device Configuration Description Default
Value Options

Shift Time [µs] (Sync 1)

Time between the sync
events and the “Output
Valid” or “Input Latch”
time.

0 -2147483648 to
2147483647

Check Vendor ID If unmarked, it will disable
the Vendor ID Check. Marked Marked

Unmarked

Check Product ID If unmarked, it will disable
the Product ID Check. Marked Marked

Unmarked

SDO Access
Set a time reference for the
timeout check of a SDO Ac-
cess.

- 0 to 100000

I -> P

Set a time reference for the
timeout check of the switch
from Init to Pre-Operation
mode.

- 0 to 100000

P -> S/S -> O

Set a time reference for
the timeout check of the
switch from Pre-Operation
to Safe-Operation and from
Safe-Operation to Opera-
tional modes.

- 0 to 100000

Cyclic Unit Set the Unit Cycle to the lo-
cal microprocessor. Unmarked Marked

Unmarked

Latch Unit 0 Set the Latch Unit 0 to the
local microprocessor. Unmarked Marked

Unmarked

Latch Unit 1 Set the Latch Unit 1 to the
local microprocessor. Unmarked Marked

Unmarked

Table 132: EtherCAT Slave Configurations

Notes:
AutoInc Address: This address is used only during startup, when the Master is assigning the EtherCAT addresses to the

Slaves. When for this matter, the first telegram runs through the Slaves, each fast-read Slave increases its AutoInc Address by
1. The Slave with address 0 finally will receive the data.

Optional: If a Slave is declared as Optional, no error message will be created in case the device doesn’t exist in the bus
system. Thus a Station alias address must be defined and written to the EEPROM. This option is only available if the option
Autoconfig Master/Slaves in the settings of the EtherCAT Master is activated and if this function is supported by the EtherCAT
Slave.

Enable Distributed Clock: If the Distributed Clock functionality is enabled, the data exchange cycle time, displayed in
the Sync Unit Cycle (µs) field will be determined by the Master Cycle Time. Thus the master clock can synchronize the data
exchange within the network. The settings for handling the synchronization unit(s) depend on the Slave.

Enable Sync 0: If this option is activated, the Sync0 synchronization unit is used. A synchronization unit describes a set
of process data which is exchanged synchronously.

Sync Unit Cycle (Sync 0): If this option is activated, the Master Cycle Time, multiplied by the chosen factor will be used
as synchronization cycle time for the slave. The Cycle Time (µs) field shows the currently set cycle time.

Shift Time: The Shift Time describes the time between the sync events (Sync0, Sync1) and the Output Valid or Input Latch
times. Writable value, if the slave supports shifting of Output Valid or Input Latch.

Enable Sync 1: If this option is selected, the synchronization unit Sync1 is used. A synchronization unit is a set of process
data which is exchange synchronously.

Sync Unit Cycle (Sync1): If this option is activated, the Master Cycle Time, multiplied by the chosen factor will be used
as synchronization cycle time for the slave. The Cycle Time (µs) field shows the currently set cycle time.

158

5. CONFIGURATION

Check Vendor ID and Product ID: By default, at startup of the system the Vendor ID and/or the Product ID will be
checked against the current configured settings. If a mismatch is detected, the bus will be stopped and no further actions will
be executed. This serves to avoid the download of an erroneous configuration. This option is intended to switch off the check,
if necessary.

SDO Access: By default there’s no timeout set for the SDO list submit action at system startup. However, if it’s necessary
to check if this action exceeds a certain time, it must be defined (in microseconds) in this field.

I -> P: By default there’s no timeout set for the state transition from Init to Pre-Operational. However, if it’s necessary to
check if this action exceeds a certain time, it must be defined (in microseconds) in this field.

P -> S / S -> O: By default there’s no timeout set for the state transition from Pre-Operational to Safe-Operational and
from Safe-Operational to Operational. However, if it’s necessary to check if this action exceeds a certain time, it must be
defined (in microseconds) in this field.

DC cycle unit control: Choose the desired option(s) concerning the Distributed Clock functions in order to define, which
should be assigned to the local microprocessor. The control is done in register 0x980 in the EtherCAT slave. The possible
settings: Cyclic Unit, Latch Unit 0, Latch Unit 1.

Enable: If the setting Optional is not activated, this setting can be activated if explicitly supported by the device description
of the slave. It allows direct assignment of an alias address in order to get the slaves address independent of its position within
the bus. If the option Optional is activated, this checkbox is disabled.

5.9.12.3.2. EtherCAT Slave - Process Data

The Process Data tab of the EtherCAT Slave configurator editor shows the slave input and output process data, each defined
by name, type and index by the device description file, as seen in figure below.

The selected input (to be read) and output (to be written) of the device are available in the EtherCAT Slave - I/O Mapping
dialog as PLC inputs and outputs to which project variables might be mapped.

Figure 114: Process Data Dialog

The Expert Process Data dialog will only be available in the EtherCAT Slave configuration editor if the Enable Expert
Settings option is activated. It provides another, more detailed, vision of the process data, adding to what is presented in the
Process Data tab. Furthermore, the download of the PDO Assignment and the PDO Configuration can be activated in this
dialog.

ATTENTION

If the Slave doesn’t accept the PDO Configuration, it will stay in Pre-Operational state and
none real time data exchange will be possible.

159

5. CONFIGURATION

Figure 115: Expert Process Data Dialog

This dialog is divided in four sections and two options:

Sync Manager: List of Sync Manager with data size and type of PDOs.
PDO Assignment: List of PDOs assigned to the selected Sync Manager. The checkbox activates the PDO and I/O
channels are created. It is similar to the simple PDO configuration windows. Here only PDOs can be enabled or
disabled.
PDO List: List of all PDOs defined in the device description file. Single PDOs can be deleted, edited or added by
executing of the respective command from the context menu.
PDO Content: Displays the content of the PDO selected in the section above. Entries can be deleted, edited or added by
executing of the respective command from the context menu.
PDO Assignment: If activated a CoE write command will be added to index 0x1CXX to write the PDO configuration
0x16XX or 0x1A00.
PDO Configuration: If activated several CoE write commands will be added to write the PDO mapping to the slave.

ATTENTION

If a Slave doesn’t support the PDO configuration, a download may result in a Slave error.
This function should only be used by experts.

160

5. CONFIGURATION

5.9.12.3.3. EtherCAT Slave - Edit PDO List

Figure 116: Edit PDO List Dialog

This dialog is opened through the context menu from the PDO List area, presented in Figure 115. Below are some
explanations on the configuration options presented in this dialog.

Name: Name of the PDO input.
Index: Index of the PDO in being edited.
TxPDO (Input): If activated, the PDO will be transferred from the Master to the Slave.
RxPDO (Output): If activated, the PDO will be transferred from the Slave to the Master.
Mandatory: The PDO is necessary and can’t be unchecked in the PDO Assignment area.
Fixed Content: The PDO content is fixed and can’t be changed. It’s not possible to add entries in the PDO Content
panel.
Virtual PDO: Reserved for future use.
Exclude PDOs: It’s possible to define a list of PDO that can, or can’t, be selected along with the PDO being edited in
the PDO Assignment area, or in the Process Data tab. If a PDO is marked in this list, it can’t be selected, turning into
gray in the PDO Assignment area when the PDO in edition is selected.
SyncUnit: ID of the PDO Sync Manager shall assigned to.

5.9.12.3.4. EtherCAT Slave - Startup Parameters

In the Startup Parameters tab, parameters for the device can be defined, which will be transferred by SDOs (Service Data
Objects) or IDN at the system’s startup. The options available in this tab, as well as the access possibilities, vary according to
the EtherCAT Slave used and they are present in the Device Description File.

5.9.12.3.5. EtherCAT Slave - I/O Mapping

This tab of the EtherCAT Slave configuration editor offers the possibility to assign the project variables to the EtherCAT
inputs or outputs. This way, the EtherCAT Slave variables can be controlled by the User Application.

161

5. CONFIGURATION

Figure 117: Slave I/O Mapping Dialog

5.9.12.3.6. EtherCAT Slave - Status and Information

The Status tab of the EtherCAT Slave provides status information (e.g. ’Running’, ’Stopped’) and device-specific diagnostic
messages, also on the used card and the internal bus system.

The Information tab, presented in the EtherCAT Slave configuration editor, shows, if available, the following general
information about the module: Name, Vendor, Type, Version, Categories, Order Number, Description, Image.

5.9.13. EtherNet/IP

The EtherNet/IP is a master-slave architecture protocol, consisting of an EtherNet/IP Scanner (master) and one or more
EtherNet/IP Adapters (slave).

The Ethernet/IP protocol is based on CIP (Common Industrial Protocol), which have two primary purposes: The transport
of control-oriented data associated with I/O devices and other system-related information to be controlled, such as configuration
parameters and diagnostics. The first one is done through implicit messages, while the second one is done through explicit
messages.

Their runtime system can act as either Scanner or Adapter. Each CPU’s NET interface support only one EtherNet/IP
instance and it can’t be instanced on an Ethernet expansion module.

An EtherNet/IP Adapter instance supports an unlimited number of modules or Input/Output bytes. In these modules, can
be added variables of types: BYTE, BOOL, WORD, DWORD, LWORD, USINT, UINT, UDINT, ULINT, SINT, INT, DINT,
LINT, REAL and LREAL.

ATTENTION

EtherNet/IP can’t be used together with Ethernet Redundant Mode or with Half-Cluster’s
redundancy.

ATTENTION

To avoid communication issues, EtherNet/IP Scanner can only have Adapters configured
within the same subnetwork.

162

5. CONFIGURATION

5.9.13.1. EtherNet/IP

To add an EtherNet/IP Scanner or Adapter it’s needed to add an Ethernet Adapter under the desired NET. This can be done
through the command Add Device. Under this Ethernet Adapter it’s possible to add a Scanner or an Adapter.

Figure 118: Adding an Ethernet Adapter

163

5. CONFIGURATION

Figure 119: Adding an EtherNet/IP Adapter or Scanner

164

5. CONFIGURATION

5.9.13.2. EtherNet/IP Scanner Configuration

Figure 120: Adding an EtherNet/IP Adapter Under the Scanner

5.9.13.2.1. General

After open the Adapter declared under the Scanner it’s possible to configure it as needed. The first Tab is General, on it is
possible to configure the IP address and the Electronic Keying parameters. These parameters must be checked or unchecked if
the adapter being used is installed on MasterTool. Otherwise, if the Adapter used is of type Generic. The Vendor ID, Device
Type, Product Code, Large Revision, and Small Revision fields must be filled in with the correct vendor’s information and the
boxes checked as much as necessary. Altus, for its part, has its own ID, which is "1454".

165

5. CONFIGURATION

Figure 121: EtherNet/IP General Tab

5.9.13.2.2. Connections

The upper area of the Connections tab displays a list of all configured connections. When there is an Exclusive Owner
connection in the EDS file, it is inserted automatically when the Adapter is added. The configuration data for these connections
can be changed in the lower part of the view.

Figure 122: EtherNet/IP Connection Tab

166

5. CONFIGURATION

Notes:
For two or more EtherNet/IP Scanners to connect to the same Remote Adapter:

1. Only one of the Scanners can establish an Exclusive Owner connection.
2. The same value of RPI(ms) must be configured for the Scanners.

The configuration data is defined in the EDS file. The data is transmitted to the remote adapter when the connection is
opened.

Configuration Description Default
Value Options

RPI (ms)
Request Packet Interval: ex-
change interval of the input
and output data.

10 ms
Multiple the Interval of the
Bus Cycle Task to which it
is associated

O -> T Size (Bytes)
Size of the producer data
from the Scanner to the
Adapter (O -> T)

0 0 - 65527

T -> O Size (Bytes)
Size of the consumer data
from the Adapter to the
Scanner (T -> O)

0 0 - 65531

Proxy Config Size (Bytes) Proxy configuration data
size - -

Device Config Size (Bytes) Device configuration data
size. - -

Connection Path
Address of the configuration
objects - input objects - out-
put objects.

Automatically generated path

Automatically generated
path, User-defined path and
Path defined by symbolic
name

Table 133: EtherNet/IP Connection parameters

To add new connections there is the button Add Connection... which will open the New connection window. In this window,
you can configure a new connection type from those predefined in the Adapter’s EDS or a connection from zero when using a
Generic device.

167

5. CONFIGURATION

Figure 123: EtherNet/IP New Connection’s Window

5.9.13.2.3. Assemblies

The upper area of the Assemblies tab displays a list of all configured connections. When a connection is selected, the
associated inputs and outputs are displayed in the lower area of the tab.

Figure 124: EtherNet/IP Assemblies

168

5. CONFIGURATION

Output Assembly and Input Assembly:

Configuration Description

Add Opens the dialog box “Add
Input/Output”

Delete Deletes all selected Input-
s/Outputs.

Move Up
Moves the selected In-
put/Output within the
list.

Move Down
The order in the list deter-
mines the order in the I/O
mapping.

Table 134: EtherNet/IP Assemblies tab

Dialog box Add Input/Output:

Configuration Description

Name Name of the input/output to
be inserted.

Help String

Data type
Type of the input/output to
be inserted. This type also
define its Bit Length.

Bit Length This value must not be
edited.

Table 135: EtherNet/IP “Add Input/Output” window

5.9.13.2.4. EtherNet/IP I/O Mapping

I/O Mapping tab shows, in the Variable column, the name of the automatically generated instance of the Adapter under
IEC Objects. In this way, the instance can be accessed by the application. Here the project variables are mapped to adapter’s
inputs and outputs.

5.9.13.3. EtherNet/IP Adapter Configuration

The EtherNet/IP Adapter requires Ethernet/IP Modules. The Modules will provide I/O mappings that can be manipulated
by user application through %I or %Q addresses according to its configuration.

New Adapters can be installed on MasterTool with the EDS Files. The configuration options may differ depending on the
device description file of the added Adapter.

5.9.13.3.1. General

The first tab of the EtherNet/IP Adapter is the General tab. Here you can set the parameters of the Electronic Keying used
in the scanner to check compatibility. In this tab, you can also install the EDS of the device directly in the MasterTool device
repository or export it.

169

5. CONFIGURATION

Figure 125: EtherNet/IP General Tab

5.9.13.3.2. EtherNet/IP Adapter: I/O Mapping

On the EtherNet/IP I/O Mapping tab, you can configure which bus cycle task the Adapter will execute.

5.9.13.4. EtherNet/IP Module Configuration

Figure 126: Adding an EtherNet/IP Module under the Adapter

170

5. CONFIGURATION

5.9.13.4.1. Assemblies

The parameters of the module’s General tab follow the same rules as described in the 134 and 135 tables.

Figure 127: EtherNet/IP Module Assemblies tab

5.9.13.4.2. EtherNet/IP Module: I/O Mapping

The I/O Mapping tab shows, in the Variable column, the name of the automatically generated Adapter instances. In this
way, the instance can be accessed by the user application.

5.9.14. IEC 60870-5-104 Server

As select this option at MasterTool, the CPU starts to be an IEC 60870-5-104 communication server, allowing connection
with up to three client devices. To each client the driver owns one exclusive event queue with the following features:

Size: 1000 events
Retentivity: non retentive
Overflow policy: keep the newest

To configure this protocol, it is needed to do the following steps:

Add a protocol IEC 60870-5-104 Server instance to one of the available Ethernet channel. To realize this procedure
consult the section Inserting a Protocol Instance
Configure the Ethernet interface. To realize this procedure consult the section Ethernet Interface
Configure the general parameters of protocol IEC 60870-5-104 Server with connection mode Port or IP, and the TCP
port number when the selected connection mode is IP
Add and configure devices, defining the proper parameters
Add and configure the IEC 60870-5-104 mappings, specifying the variable name, type of object, object address, size,
range, dead band and type of dead band
Configure the link layer parameters, specifying the addresses, communication time-outs and communication parameters
Configure the application layer parameters, synchronism configuration, commands, as well as transmission mode of
Integrated Totals objects

The descriptions of each configuration are related below, in this section.

5.9.14.1. Type of data

The table below shows the supported variable type by the Nexto Series CPU for each protocol IEC 60870-5-104 data type.

171

5. CONFIGURATION

Object Type IEC Variables Type
Single Point Information (M_SP_NA) BOOL

BIT
Double Point Information (M_DP_NA) DBP
Step Position Information (M_ST_NA) USINT

Measured Value, normalized value (M_ME_NA) INT
Measured Value, scaled value (M_ME_NB) INT

INT
UINT

Measured Value, short floating point value (M_ME_NC) DINT
UDINT
REAL

Integrated Totals (M_IT_NA) INT
DINT

Bitstring Information (M_BO_NA) DWORD
Single Command (C_SC_NA) BOOL

BIT
Double Command (C_DC_NA) DBP

Regulating Step Command (C_RC_NA) DBP
Setting Point Command, normalized Value (C_SE_NA) INT

Setting Point Command, scaled Value (C_SE_NB) INT
Setting Point Command, short floating point Value (C_SE_NC) REAL

Bitstring Command (C_BO_NA) DWORD

Table 136: Variables Declaration to IEC 60870-5-104

Notes:
Regulating Step Command: The Lower and Higher object states of the C_RC_NA are associated respectively to OFF

and ON internal DBP type states.
Step Position Information: According to item 7.3.1.5 of Standard IEC 60870-5-101, this 8 bit variable is compose by two

fields: value (defined by the 7 bits less significant) and transient (defined as the most significant bit, which indicates when the
measured device is transitioning).

Below, there is a code example for fields manipulation in an USINT type variable. Attention, because this code doesn’t
consist if the value is inside the range, therefore this consistency remains at user’s charge.

PROGRAM UserPrg
VAR
usiVTI: USINT; // Value with transient state indication, mapped for the Client
siValue: SINT; // Value to be converted to VTI. Must be between -64 and +63
bTransient: BOOL; // Transient to be converted to VTI
END_VAR

usiVTI := SINT_TO_USINT(siValue) AND 16#3F;
IF siValue < 0 THEN
usiVTI := usiVTI OR 16#40;
END_IF
IF bTransient THEN
usiVTI := usiVTI OR 16#80;
END_IF

172

5. CONFIGURATION

PROGRAM UserPrg
VAR

iAnalogIn: INT;
iAnalogOut: INT;
diCounter: DINT;

END_VAR

// Analog input conversion from WORD (PROFIBUS) to INT (IEC104)
iAnalogIn:= WORD_TO_INT(wNX6000in00);

// Analog output conversion from INT(IEC104) to WORD (PROFIBUS)
wNX6100out00:= INT_TO_WORD(iAnalogOut);

// Counter conversion from WORDs high+low (PROFIBUS) to DINT (IEC104)
diCounter:= DWORD_TO_DINT(ROL(WORD_TO_DWORD(wNX1005cnt00H), 16) OR wNX1005cnt00L

);

5.9.14.2. Double Points

The double digital points are used to indicate equipment position, such as valves, circuit breakers and secctioners, where
the transition between open and close states demand a determined time. Can thus indicate an intermediary transition state
between both final states.

Double digital points are also used as outputs and, in an analogous way, it is necessary to keep one of the outputs enabled
for a certain time to complete the transition. Such actuation is done through pulses, also known by trip/close commands, with
determined duration (enough to the switching of the device under control).

Consult the Double Points section of Utilization Manual for information about double digital points through DBP data
type.

Once the Nexto Series digital input and output modules don’t support DBP points mapping, some application trickery
are needed to make it possible. Remembering that is also not possible to use the PulsedCommand function, defined at the
LibRtuStandard library, to operate the Nexto Series digital double points.

5.9.14.2.1. Digital Input Double Points

For the digital input modules it is needed two auxiliary variables’ declaration, to be mapped on the digital input module,
besides the double point that is wished to map on the server:

The double point value variable: type DBP
The simple point OFF/TRIP value variable: type BOOL
The simple point ON/CLOSE value variable: type BOOL

Figure 128: Double Point Variables Declaration Example

Done the variables declaration, it is necessary to create a link between the value variables and the digital input module
quality, through the CPU’s Internal Points tab:

173

5. CONFIGURATION

Figure 129: Double Point Variables Attribution to Internal Points

The double point value variable must be mapped at the server IEC 60870-5-104 driver, and both simple variables at the
Nexto Series digital input module (in that example, a NX1001). Typically the OFF (TRIP) state is mapped to the even input
and the ON (CLOSE) state to the odd input.

Figure 130: Double Point Variables Mapping on the Client IEC 60870-5-104

Figure 131: Variables Mapping at the Module Inputs

At last, the user must insert two code lines in its application, to be cyclically executed, to simple variables value attribution
to double point:

DBP value variable, index ON, receive simple point ON value
DBP value variable, index OFF, receive simple point OFF value

174

5. CONFIGURATION

Figure 132: Variables’ Values Attribution to the Double Point

5.9.14.2.2. Digital Output Double Points

For the digital output modules it must be used the CommandReceiver function block to intercept double points actuation
commands originated from the clients IEC 60870-5-104. Consult the section Interception of Commands Coming from the
Control Center for further information.

The example code below, POU CmdRcv, treats pulsed commands received from clients for a digital double point, mapped
in a NX2020 module. Besides the following ST code it is need to map a DBP point in Nexto’s IEC 60870-5-104 server.

Figure 133: Mapping of Digital Output Double Point variables on IEC 60870-5-104 Client

PROGRAM CmdRcv
VAR
CmdReceive: CommandReceiver; // Interceptor Instance
fbPulsedCmd: PulsedCommandNexto; // Pulsed Command Instance
byResult: BYTE; // Pulsed command result
dbpIEC104: DBP; // Variable mapped in the IEC 104
bSetup: BOOL:= TRUE; // Interceptor initial setup
END_VAR

// Executes the function configuration in the first cycle
IF bSetup THEN
CmdReceive.dwVariableAddr:= ADR(dbpIEC104);
CmdReceive.bExec:= TRUE;
CmdReceive.eCommandResult:= COMMAND_RESULT.NONE;
CmdReceive.dwTimeout:= 256 * 10;
bSetup:= FALSE;
END_IF

// In case a command is captured:
IF CmdReceive.bCommandAvailable THEN

// Treats each one of the possible commands
CASE CmdReceive.sCommand.eCommand OF

COMMAND_TYPE.NO_COMMAND:

// Inform that there is an invalid command.

175

5. CONFIGURATION

// Does nothing and must move on by time-out.

COMMAND_TYPE.SELECT:

// Treats only commands for double points
IF CmdReceive.sCommand.sSelectParameters.sValue.eParamType =
DOUBLE_POINT_COMMAND THEN
// Returns command finished with success
// (controlled by IEC104 protocol)
byResult:= 7;

ELSE
// Returns command not supported
byResult:= 1;

END_IF

COMMAND_TYPE.OPERATE:

// Treats only commands for double points
IF CmdReceive.sCommand.sOperateParameters.sValue.eParamType =
DOUBLE_POINT_COMMAND THEN
// Pulse generation in outputs
IF CmdReceive.sCommand.sOperateParameters.sValue.sDoublePoint.bValue THEN

// Executes TRIP function
fbPulsedCmd(

byCmdType:= 101,
byPulseTime:= DWORD_TO_BYTE(CmdReceive.sCommand.sOperateParameters.

sValue.sDoublePoint.sPulseConfig.dwOnDuration/10),
ptDbpVarAdr:= ADR(dbpIEC104),
stQuality:= IOQualities.QUALITY_NX2020[4],
byStatus=> byResult);

ELSE
// Executes CLOSE function
fbPulsedCmd(

byCmdType:= 102,
byPulseTime:= DWORD_TO_BYTE(CmdReceive.sCommand.sOperateParameters.

sValue.sDoublePoint.sPulseConfig.dwOffDuration/10),
ptDbpVarAdr:= ADR(dbpIEC104),
stQuality:= IOQualities.QUALITY_NX2020[5],
byStatus=> byResult);

END_IF
ELSE

// Returns command not supported
byResult:= 1;

END_IF

COMMAND_TYPE.CANCEL:

// Returns command finished with success
// (controlled by IEC104 protocol)
byResult:= 7;

END_CASE

// Treats the pulsed command function result
// and generates the answer to the intercepted command
CASE byResult OF

176

5. CONFIGURATION

1: // Invalid type of command
CmdReceive.eCommandResult:= COMMAND_RESULT.NOT_SUPPORTED;
CmdReceive.bDone:= TRUE;

2: // Invalid input parameters
CmdReceive.eCommandResult:= COMMAND_RESULT.INCONSISTENT_PARAMETERS;
CmdReceive.bDone:= TRUE;

3: // Parameter change in running
CmdReceive.eCommandResult:= COMMAND_RESULT.PARAMETER_CHANGE_IN_EXECUTION;
CmdReceive.bDone:= TRUE;

4: // Module did not answered the command(absent)
CmdReceive.eCommandResult:= COMMAND_RESULT.HARDWARE_ERROR;
CmdReceive.bDone:= TRUE;

5: // Command started and in running (does not returns nothing)
6: // Another command has been sent to this point and it is running

CmdReceive.eCommandResult:= COMMAND_RESULT.LOCKED_BY_OTHER_CLIENT;
CmdReceive.bDone:= TRUE;

7: // Command finished with success
CmdReceive.eCommandResult:= COMMAND_RESULT.SUCCESS;
CmdReceive.bDone:= TRUE;

END_CASE

END_IF

CmdReceive();

IF CmdReceive.bDone THEN
CmdReceive.bDone:= FALSE;
END_IF

As can be observed in the previous code, to help in the pulse generation in Nexto’s digital double outputs, it was created
and used a function block equivalent to PulsedCommand function of library LibRtuStandard. The PulsedCommandNexto()
function block shows up coded in ST language.

FUNCTION_BLOCK PulsedCommandNexto
VAR_INPUT
byCmdType: BYTE; // command type:

// 100 = status
// 101 = close/on
// 102 = trip/off

byPulseTime: BYTE; // Pulse duration (in hundredths of second)
ptDbpVarAdr: POINTER TO DBP; // DBP variable address (can be mapped)
stQuality: QUALITY; // DBP point quality(digital module)
END_VAR
VAR_OUTPUT
bON: BOOL; // Odd output mapped on Nexto DO module
bOFF: BOOL; // Even output mapped on Nexto DO module
byStatus: BYTE:= 7; // Function return:

// 1 = invalid command
// 2 = Time out of valid range (2..255)
// 3 = command changed in running time
// 4 = module did not answer to the command (absent)
// 5 = command started or running
// 6 = There is already an active command on this point
// 7 = pulse command finished with success

177

5. CONFIGURATION

END_VAR
VAR
byState: BYTE; // Function block state
udiPulseEnd: UDINT; // Pulse end instant
END_VAR

// PulsedCommandNexto state machine
CASE byState OF

0: // Init state, ready to receive commands:
CASE byCmdType OF

100:// Just returns the last status

101: // Execute pulse ON:
// Valids the pulse duration
IF byPulseTime > 1 THEN

// Check if there is already an active command on this point
IF ptDbpVarAdr^.ON OR ptDbpVarAdr^.OFF THEN

// Returns that there is already an active command
byStatus:= 6;

ELSE
// Enables CLOSE output
ptDbpVarAdr^.ON:= TRUE;
ptDbpVarAdr^.OFF:= FALSE;
// Next state: execute pulse ON
byState:= byCmdType;
// Returns started command
byStatus:= 5;

END_IF
ELSE

// Returns the out of range pulse
byStatus:= 2;

END_IF

102: // Execute pulse OFF
// Valids the pulse duration
IF byPulseTime > 1 THEN

// Check if there is already an active command on this point
IF ptDbpVarAdr^.ON OR ptDbpVarAdr^.OFF THEN

// Returns that there is already an active
byStatus:= 6;

ELSE
// Enables TRIP output
ptDbpVarAdr^.ON:= FALSE;
ptDbpVarAdr^.OFF:= TRUE;
// Next step: execute pulse OFF
byState:= byCmdType;
// Returns started command
byStatus:= 5;

END_IF
ELSE

// Returns the out of range pulse
byStatus:= 2;

END_IF
ELSE

178

5. CONFIGURATION

// Returns invalid command
byStatus:= 1;

END_CASE

// Memorizes the instant of the pulse end
udiPulseEnd:= SysTimeGetMs() + BYTE_TO_UDINT(byPulseTime) * 10;

101, 102:// Continues the pulse execution ON/OFF
// It returns that the command is running
byStatus:= 5;
// Checks the running parameter change
IF byCmdType <> 100 AND byCmdType <> byState THEN

// Returns the running parameter change
byStatus:= 3;

END_IF
// Checks pulse end
IF SysTimeGetMs() >= udiPulseEnd THEN

// Disable TRIP and CLOSE outputs
ptDbpVarAdr^.ON:= FALSE;
ptDbpVarAdr^.OFF:= FALSE;
// Returns finished command, only if the command has not changed
IF byCmdType = 100 OR byCmdType = byState THEN

byStatus:= 7;
END_IF
// Next state: initial
byState:= 0;

END_IF

END_CASE

// Checks digital module (DBP point) quality
IF stQuality.VALIDITY <> QUALITY_VALIDITY.VALIDITY_GOOD THEN
// Disable TRIP and CLOSE outputs
ptDbpVarAdr^.ON:= FALSE;
ptDbpVarAdr^.OFF:= FALSE;
// Returns absent module
byStatus:= 4;
// Next state: initial
byState:= 0;
END_IF

// Copy DBP output states to the simple outputs
bON:= ptDbpVarAdr^.ON;
bOFF:= ptDbpVarAdr^.OFF;

179

5. CONFIGURATION

5.9.14.3. General Parameters

To the General Parameters configuration of an IEC 60870-5-104 Server according to figure below follow the table below
parameters:

Figure 134: Server IEC 60870-5-104 General Parameters Screen

Parameter Description Factory De-
fault Possibilities

Connection Mode
Set the connection mode
with the Connected Client
modules.

Port Port
IP

TCP Port

Defines which PLC’s TCP
port number will be used to
communicate with the Con-
nected Client modules. In
case the “Connection Mode”
field is set as "IP".

2404 1 to 65535

Table 137: IEC 60870-5-104 Server General Parameters Configuration

5.9.14.4. Data Mapping

To configure the IEC 60870-5-104 Server data relation, viewed on figure below follow the parameters described on table
below:

Figure 135: IEC 60870-5-104 Server Mappings Screen

Parameter Description Factory De-
fault Possibilities

Value Variable Symbolic variable name - Name of a variable declared
in a POU or GVL

180

5. CONFIGURATION

Parameter Description Factory De-
fault Possibilities

Object Type IEC 60870-5-104 object
type configuration -

Single Point Information
Double Point Information
Step Position Information
Measured Value (Normal-
ized)
Measured Value (Scaled)
Measured Value (Short
Floating Point)
Integrated Totals
Bitstring Information (32
Bits)
Single Command
Double Command
Regulating Step Command
Setting Point Command
(Normalized)
Setting Point Command
(Scaled)
Setting Point Command
(Short Floating Point)
Bitstring Command (32
Bits)

Object Address IEC 60870-5-104 mapping
first point’s index - 1 to 65535

Size

Specifies the maximum data
quantity that an IEC 60870-
5-104 mapping will can ac-
cess

- 1 to 86400000

Range Configured data address
range - -

Counter Variable
Name of the symbolic vari-
able which will hold the
counter variable’s value

-
Name of a variable declared
in a POU, GVL or counter
module

Dead Band Variable
Name of the symbolic vari-
able which will hold the
dead band’s value

- Name of a variable declared
in a POU or GVL

Dead Band Type Defines the dead band type
to be used in the mapping Disabled

Absolute
Disabled
Integrated

Select Required
Defines if it is required a
previous select to run a com-
mand

False True
False

Short Pulse (ms)
Defines the short pulse time
to an IEC 60870-5-104 digi-
tal command

1000 1 to 86400000

Long Pulse (ms)
Defines the long pulse time
to an IEC 60870-5-104 digi-
tal command

2000 1 to 86400000

Table 138: IEC 60870-5-104 Server Mappings Configuration

181

5. CONFIGURATION

Notes:
Value Variable: When a read command is sent, the return received in the answer is stored in this variable. When it is a

write command, the written value is going to be stored in that variable. The variable can be simple, array, array element or can
be at structures.

Counter Variable: This field applies only on mapping of Integrated Totals type objects, being this the controller variable
to be managed on process. It must has same type and size of the variable declared on Value Variable column, which value is
going to be read, or reported to, the client in case of events.

ATTENTION

When the Counter Variable has a quality variable associated, to the quality to be transferred
to the frozen variable at freeze command, it must be associated a quality variable to the
frozen one. This procedure must be done through Internal Points tab.

Dead Band Variable: This field applies only to input analog variables (Measured Value type objects) mappings. It must
has same type and size of the variable declared on Value Variable column. New dead band variable values are going to be
considered only when the input analog variable change its value.

Dead Band Type: The configuration types available to dead band are:

Function type Configuration Description

Disabled
In this option, any value change in a
group’s point, as smaller it is, generates an
event to this point.

Dead Band Type Absolute

In this option, if the group’s point value ab-
solute change is bigger than the value in
“Dead Band” field, an event is going to be
generated to this point.

Integrated

In this option, if the absolute of the inte-
gration of the group’s point value change
is bigger than the value in “Dead Band”
field, an event is going to be generated to
this point. The integration interval is one
second.

Table 139: IEC 60870-5-104 Server Mappings Dead Band Types

Short Pulse and Long Pulse: At the define of short and long pulses duration time it must be considered the limits
supported by the device which will treat the command. For example, case the destiny is an output card, which is not supported
in native by Nexto Series. It must be checked at the module’s Datasheet what the minimum and maximum times, as well as
the resolution, to running the pulsed commands.

5.9.14.5. Link Layer

To the IEC 60870-5-104 Server link layer parameters configuration, shown on figure below, follow the described parameters
on table below:

182

5. CONFIGURATION

Figure 136: Server IEC 60870-5-104 Link Layer Configuration Screen

Parameter Description Factory De-
fault Possibilities

Port Number

Listened port address to
client connection. Used
when the client connection
isn’t through IP

2404 1 to 65535

IP Address
Connected client IP, used
when the client connection
is through IP

0.0.0.0 1.0.0.1 to 223.255.255.254

Common Address of
ASDU

IEC 60870-5-104 address,
if the connected client is
through IP

1 1 to 65534

Time-out t1 (s)

Time period (in seconds)
that the device waits the re-
ceiving of an acknowledge
message after sent an APDU
message type I or U (data),
before close the connection

15 1 to 180

Time-out t2 (s)

Time period (in seconds)
that the device waits to
send a watch message (S-
Frame) acknowledging the
data frame receiving

10 1 to 180

Time-out t3 (s)

Time period (in seconds) in
what is going to be sent a
message to link test in case
there is no transmission by
both sides

20 1 to 180

Parameter k (APDUs)

Maximum number of data
messages (I-Frame) trans-
mitted and not acknowl-
edged

12 1 to 12

Parameter w (APDUs)

Maximum number of
data messages (I-Frame)
received and not acknowl-
edged

8 1 to 8

Table 140: IEC 60870-5-104 Server Link Layer Configuration

183

5. CONFIGURATION

Note:
The fields Time-out t1 (s), Time-out t2 (s) and Time-out t3 (s) are dependents between themselves and must be configured

in a way that Time-out t1 (s) be bigger than Time-out t2 (s) and Time-out t3 (s) be bigger than Time-out t1 (s). If any of these
rules be not respected, error messages are going to be generated during the project compilation.

ATTENTION

For slow communication links (example: satellite communication), the parameters Time-out
t1 (s), Time-out t2 (s) and Time-out t3 (s) must be properly adjusted, such as doubling the
default values of these fields.

5.9.14.6. Application Layer

To configure the IEC 60870-5-104 Server application layer, shown on figure below, follow the parameters described on
table below:

Figure 137: Server IEC 60870-5-104 Application Layer Configuration Screen

Parameter Description Factory De-
fault Possibilities

Enable Time Synchroniza-
tion

Option to Enable/Disable
time sync request Disabled Disabled

Enabled

Time Synchronization
Command Received in
Local Time

Option to Enable/Disable
the treatment of the synchro-
nization command in local
time

Enabled Disabled
Enabled

Use Local Time instead of
UTC Time

Option to Enable/Disable
the time stamp in local time
for events

Disabled Disabled
Enabled

Maximum Time Between
Select and Operate (s)

Time period in which the
selection command will
remain active (the count
starts from the received
selection command ac-
knowledge) waiting the
Operate command

5 1 to 180

184

5. CONFIGURATION

Parameter Description Factory De-
fault Possibilities

Transmission Mode of
Analog Input Events

Analog input events trans-
mission mode

All Events
(SOE)

All Events (SOE)
Most Recent Event

Transmission Mode
Frozen counters transmis-
sion mode (Integrated To-
tals)

Freeze by
counter-
interrogation
command,
transmit
sponta-
neously

Freeze by counter-
interrogation command,
transmit spontaneously
Freeze and transmit by
counter-interrogation
command

Table 141: IEC 60870-5-104 Server Application Layer Configuration

Notes:
Enable Time Synchronization: Once enabled, allow the IEC 60870-5-104 Server adjust the CPU’s clock when a sync

command is received.
Time Synchronization Command Received in Local Time: When enabled, the IEC 60870-5-104 Server adjusts the CPU

clock by treating the time received in the synchronization command as local time. Otherwise, this time is considered UTC.
Use Local Time instead of UTC Time: Once enabled, the time stamp of the events generated by IEC 60870-5-104 Server

will be sent according to the CPU’s local time.

ATTENTION

When the time sync option is checked in more than one server, the received times from
different servers will be overwritten in the system clock in a short time period, being able to
cause undesirable behaviors due to delays on messages propagation time and system load.

Transmission Mode of Analog Inputs Events: The Analog Inputs Events transmission modes available are the following:

Function Type Configuration Description
Transmission Mode
of Analog Input
Events

All Events (SOE) All analog events generated are going to be
sent.

Most Recent Event It is sent only the most recent analog event.

Table 142: IEC 60870-5-104 Server Transmission Modes of Analog Inputs Events

185

5. CONFIGURATION

Transmission Mode: The available transmission modes of the frozen counters (Integrated Totals) are the following:

Function Type Configuration Description

Transmission Mode

Freeze by counter-
interrogation com-
mand, transmit
spontaneously

Equivalent to the counters acquisition D
Mode (Integrated Totals) defined by Stan-
dard IEC 60870-5-101. In this mode,
the control station’s counters interrogation
commands, freeze the counters. Case the
frozen values have been modified, they are
reported through events.

Freeze and trans-
mit by counter-
interrogation com-
mand

Equivalent to the counters acquisition C
Mode (Integrated Totals) defined by Stan-
dard IEC 60870-5-101. In this mode,
the control station’s counters interrogation
commands, freeze the counters. The sub-
sequent counters interrogation commands
(read) are sent by the control station to re-
ceive the frozen values.

Table 143: IEC 60870-5-104 Server Transmission Modes of the Frozen Counters

ATTENTION

The Standard IEC 60870-5-104, section Transmission control using Start/Stop, foresee the
commands STARTDT and STOPDT utilization to data traffic control between client and
server, using simple or multiple connections. Despite Nexto supports such commands, its
utilization isn’t recommended to control data transmission, mainly with redundant CPUs,
because such commands aren’t synchronized between both CPUs. Instead of using multiple
connections between client and Nexto server, it’s suggested the use of NIC Teaming re-
sources to supply (physically) redundant Ethernet channels and preserve the CPU resources
(CPU control centers).

5.9.14.7. Server Diagnostic

The IEC 60870-5-104 Server protocol diagnostics are stored in T_DIAG_IEC104_SERVER_1 type variables, which are
described in table below:

Diagnostic variable of type
T_DIAG_IEC104_SERVER_1.* Size Description

Command bits, automatically reset:
tCommand.bStop BOOL Disable Driver
tCommand.bStart BOOL Enable Driver
tCommand.bDiag_01_Reserved BOOL Reserved
tCommand.bDiag_02_Reserved BOOL Reserved
tCommand.bDiag_03_Reserved BOOL Reserved
tCommand.bDiag_04_Reserved BOOL Reserved
tCommand.bDiag_05_Reserved BOOL Reserved
tCommand.bDiag_06_Reserved BOOL Reserved

Diagnostics:
tClient_X.bRunning BOOL IEC 60870-5-104 Server is running

186

5. CONFIGURATION

Diagnostic variable of type
T_DIAG_IEC104_SERVER_1.* Size Description

tClient_X.eConnectionStatus.
CLOSED

Communication channel closed. Server
won’t accept connection request. ENUM
value (0)

tClient_X.eConnectionStatus.
LISTENING

ENUM(BYTE)
Server is listening to the configured port
and there is no connected clients. ENUM
value (1)

tClient_X.eConnectionStatus.
CONNECTED

Connected client. ENUM value (2)

tClient_X.tQueueDiags.
bOverflow

BOOL Client queue is overflowed

tClient_X.tQueueDiags.
wSize

WORD Configured queue size

tClient_X.tQueueDiags.
wUsage

WORD Events number in the queue

tClient_X.tQueueDiags.
dwReserved_0

DWORD Reserved

tClient_X.tQueueDiags.
dwReserved_1

DWORD Reserved

tClient_X.tStats.wRXFrames WORD Number of received frames
tClient_X.tStats.wTXFrames WORD Number of sent frames

tClient_X.tStats.wCommErrors WORD
Communication errors counter, including
physical layer, link layer and transport
layer errors.

tClient_X.tStats.dwReserved_0 DWORD Reserved
tClient_X.tStats.dwReserved_1 DWORD Reserved

Table 144: IEC 60870-5-104 Server Diagnostics

5.9.14.8. Commands Qualifier

The standard IEC 60870-5-104 foresee four different command qualifiers for the objects Single Command, Double Com-
mand and Regulating Step Command, all supported by the Nexto Server.

Each object type has a specific behavior to each command qualifier, as can be seen on the table below.

Qualifier Protocol IEC 60870-5-104 object type
Single Command Double Command Regulating Step Command

No additional defini-
tion (default)

Same behavior of persis-
tent qualifier.

Same behavior of short
pulse qualifier.

Same behavior of short pulse
qualifier.

Short pulse duration

Requires command in-
terception to application
treatment. Other way
it will return a nega-
tive acknowledge mes-
sage (fail).

Requires command in-
terception to application
treatment. Other way
it will return a nega-
tive acknowledge mes-
sage (fail).

Requires command interception
to application treatment. Other
way it will return a negative ac-
knowledge message (fail).

Long pulse duration

187

5. CONFIGURATION

Qualifier Protocol IEC 60870-5-104 object type
Single Command Double Command Regulating Step Command

Persistent output

The output is going to
be on or off and that
will remain until new
command, according to
value (ON or OFF) com-
manded by the client.

Table 145: IEC 60870-5-104 Server Commands Qualifier

Note:
Command Interception: For further information about commands interception of IEC 608705-104 clients, consult section

Interception of Commands Coming from the Control Center, implemented through CommandReceiver function block.

5.9.15. CANopen Manager

CANopen is a protocol based on CAN bus which provides fast I/O update (around 5 ms for a 1000 kbit/s network with a
few slaves) with a simple twisted pair physical bus infrastructure.

The CANopen Manager (master) is responsible for controlling the slave devices, managing their operation state and ex-
changing I/O and other service data. By default, the CANopen manager protocol activities (bus cycle) are executed on the
context of MainTask, keeping it synchrounous with the execution of application code.

The configuration of CANopen network is performed with the support of EDS files, which describes the I/O data and
service objects (PDO and SDO) of the slave and must be provided by the device manufacturer.

Additionally, an application library called CiA405 is provided with FunctionBlocks which allows to perform several spe-
cific actions like changing the slave state (NMT), receiving emergency object, querying the slave state and performing SDO
read/write commands. The complete description of CiA405 library can be found on Online Help (F1) of MasterTool IEC XE.

ATTENTION

- Only one CANopen Manager instance per project is allowed
- The CANopen specification allows up to 127 nodes (including Manager).

A special care must be taken considering the physical bus lenght and the selected baudrate. The following table shows the
maximum bus lenght that can be used safely with a given baudrate:

Baudrate Maximum bus lenght
1000 kbit/s 25 m
800 kbit/s 50 m
500 kbit/s 100 m
250 kbit/s 250 m
125 kbit/s 500 m
100 kbit/s 700 m
< 50 kbit/s 1000 m

Table 146: Baudrate vs Bus Lenght

5.9.15.1. Installing and inserting CANopen Devices

The configuration of a CANopen network uses the same standard procedure of other fieldbuses configuration on MasterTool
IEC XE.

To add a CANopen Manager, right-click on the CAN interface and select Add Device. Expand the itens until finding
CANopen_Manager device and click on the Add Device button. The CANopen Manager device will appear below the CAN
interface as shown on the following picture:

188

5. CONFIGURATION

Figure 138: Adding CANopen Manager

To add a CANopen slave device, first you need to install it on the Device Repository. To do that, go to Tools -> Device
Repository and install the device EDS file.

After that, right-click on the CANopen_Manager device and click on Add Device. Search the devices you desire and click
on Add Device button like shown on the following picture:

Figure 139: Adding CANopen Slave Device

5.9.15.2. CANopen Manager Configuration

The CANopen Manager comes with a ready-to-use configuration (default values). Typically, it is just needed to set the
correct baudrate and slave address to have a network running.

The main parameters of CANopen manager are located at General tab:

189

5. CONFIGURATION

Figure 140: CANopen Manager general parameters

The detailed description of CANopen Manager general parameters can be found on section Device Editors -> CANopen
of MasterTool IEC XE Online Help (F1).

Additionally, the tab CANopen I/O Mapping allows to change the bus cycle task:

Figure 141: CANopen Manager bus cycle task setting

By default, the bus cycle task is configured to use the MainTask. This is the recommended setting for most of the applica-
tions. Changing this setting is only required on a very specific scenario which requires the implementation of a time-critical
control loop using CANopen I/O (5ms lets say) that can not be performed on MainTask due to heavy application code.

5.9.15.3. CANopen Slave Configuration

The configuration of CANopen Remote Devices (Slaves) is separated in the first four tabs shown on the following picture:

Figure 142: CANopen Slave parameters

190

5. CONFIGURATION

The General tab contains the slave address (Node ID), Nodeguarding and Emergency object settings.
The PDO tab contains the configuration of process data (I/O data) that will be exchanged.
The SDO tab contains the SDO objects which can be selected to be accessed by SDO read/write FunctionBlock provided

by CiA405 library.
The detailed description of CANopen Slave parameters can be found on section "Device Editors -> CANopen of Master-

Tool IEC XE Online Help (F1).

5.10. Remote I/O Mode
Nexto Xpress controllers have a remote operation mode, which is used as I/O expansion. This expansion is based in

CANopen protocol. When the controller is in remote mode, it isn’t a standard PLC, operating only as a remote slave. To
configure your Xpress as a remote I/O expansion, access the Operation Mode section, in the Management tab of the Controller’s
System Web Page.

Figure 143: Remote I/O Configuration Screen

In this tab, it’s possible to choose the controller operation mode through the configuration parameter. This is available only
when the controller is in STOP. Use the Apply Configuration button to change to the desired mode. The Xpress will reboot and
configure the new operation mode. The available options are:

Programmable Controller: default controller function, which can be programmed according to user needs.
CANopen Slave: remote I/O expansion function, where the controller becomes a CANopen slave, which can commu-
nicate to other controllers through CANopen Manager.

ATTENTION

The remote operation mode uses an application developed only for I/O expansion, which
runs in a 5 ms MainTask cycle. It’s not possible change or download an application in this
mode.

When in remote operation mode, some features of the controller will be modified. The controller can’t be found by the
MasterTool. However, it’s possible to find the device via Easy Connection, even change its IP, without erase the application.
Besides that, in the Firmware Update tab on the Web page, the Erase Application option is unavailable.

191

5. CONFIGURATION

5.10.1. CANopen Slave

To use the expansion mode as a CANopen Slave, first, change the Operation Mode to CANopen Slave, in Operation Mode
on the Web page. Next, make the configurations of the CANopen Slave: configure the network (IP Address, Network Mask and
Gateway); configure the CANopen parameters (Node ID, Baudrate and Termination); and the I/O configuration (according to
the controller). These settings are similar to a typical application.

Figure 144: CANopen Slave Remote Configuration Screen

Click in the items with the + on the right to expand the configuration panel. All parameters shown in the I/O Configuration
are the same mentioned in the Integrated I/O section. While the CANopen Slave Configuration parameters are the same of
those in the CANopen Manager section.

Figure 145: Expanded Digital Inputs Configuration Screen

192

5. CONFIGURATION

Figure 146: Expanded Analog Inputs Configuration Screen

Figure 147: Expanded RTD Inputs Configuration Screen

193

5. CONFIGURATION

Figure 148: Expanded Analog Outputs Configuration Screen

After the configuration step, it’s possible to use the Export Configuration button to download a file called WebRemote-
Configuration.config. This file contains all parameters configured in the Remote I/O Configuration screen. You can use this
file to load the configuration through the Import Configuration button. Besides that, you can download the CANopen Slave
Electronic Data Sheet (EDS) file directly by the Download EDS button in the Web.

When the configuration is done, click in Apply Configuration to reboot the controller with the new settings. The Web page
will automatically reload to the configured IP. The mode change can be confirmed by the CANopen Slave in the Operation
Mode field, in the PLC Overview tab.

Figure 149: Operation Mode in the PLC Overview Screen

Therefore, it’s possible to use a controller with the CANopen Manager feature (e.g. XP325) to access the CANopen Slave
I/O. See the CANopen Manager section in this document to learn how use this feature. The CANopen Slave Remote PDOs are
organized as follow:

194

5. CONFIGURATION

Variable Name Representation Variable Type
Digital_Outputs_1 Q0 Group USINT - 8 bits
Digital_Outputs_2 Q1 Group USINT - 8 bits
Analog_Outputs_1 AO0 INT - 16 bits
Analog_Outputs_2 AO1 INT - 16 bits
Analog_Outputs_3 AO2 INT - 16 bits
Analog_Outputs_4 AO3 INT - 16 bits
Digital_Inputs_1 I0 Group USINT - 8 bits
Digital_Inputs_2 I1 Group USINT - 8 bits
Analog_Inputs_1 AI0 INT - 16 bits
Analog_Inputs_2 AI1 INT - 16 bits
Analog_Inputs_3 AI2 INT - 16 bits
Analog_Inputs_4 AI3 INT - 16 bits
Analog_Inputs_5 AI4 INT - 16 bits
RTD_Inputs_1 RI0 INT - 16 bits
RTD_Inputs_2 RI1 INT - 16 bits
Diagnostics_Analog_Inputs_1 AI0 Diagnostics USINT - 8 bits
Diagnostics_Analog_Inputs_2 AI1 Diagnostics USINT - 8 bits
Diagnostics_Analog_Inputs_3 AI2 Diagnostics USINT - 8 bits
Diagnostics_Analog_Inputs_4 AI3 Diagnostics USINT - 8 bits
Diagnostics_Analog_Inputs_5 AI4 Diagnostics USINT - 8 bits
Diagnostics_RTD_Inputs_1 RI0 Diagnostics USINT - 8 bits
Diagnostics_RTD_Inputs_2 RI1 Diagnostics USINT - 8 bits
Diagnostics_Analog_Outputs_1 AO0 Diagnostics USINT - 8 bits
Diagnostics_Analog_Outputs_2 AO1 Diagnostics USINT - 8 bits
Diagnostics_Analog_Outputs_3 AO2 Diagnostics USINT - 8 bits
Diagnostics_Analog_Outputs_4 AO3 Diagnostics USINT - 8 bits

Table 147: CANopen Slave Remote PDOs Organization

Digital I/Os are accessed by groups. They use a byte, where each bit is an digital I/O (e.g. I00 is the less significant bit
- LSB - and I07, the most significant bit - MSB). Analog I/Os are transmitted/received directly through an integer. And the
diagnostics of each analog I/O are received in a byte, according to the following tables:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
- - - - - bOpenLoop bOverRange bInputNotEnable

Table 148: AIx Diagnostics

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
- - - - - bUnderRange bOverRange bInputNotEnable

Table 149: RIx Diagnostics

195

5. CONFIGURATION

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
- - - - - bShortCircuit bOpenLoop bOutputNotEnable

Table 150: AOx Diagnostics

ATTENTION

PDOs can’t be edited or removed from the CANopen Slave. It’s not possible to create your
own CANopen slave device.

How the CANopen Slave is not accessible by the user via MasterTool, the RUN and STOP state of the application are con-
trolled by the CANopen slave operation state. To put the CANopen Slave in RUN, it’s necessary to set the state to Operational
(green symbol next to the device). To put it in STOP, you need to use the NMT Function Block of the CiA405 library - see
Online Help (F1) - to change the CANopen slave operation state (recommended). Or, you can remove the CAN connector
of the remote controller. The CAN LED can keep blinking once it indicates the message transmission and reception, not the
operation state of the CANopen protocol.

Figure 150: CANopen Slave in Operational - RUN

196

5. CONFIGURATION

Figure 151: CANopen Slave in Pre-Operational - STOP

5.10.2. PROFINET Controller

For correct use of the PROFINET Controller protocol, it is necessary to consult the manual MU214621 - Nexto Series
PROFINET Manual .

5.11. Communication Performance
5.11.1. MODBUS Server

The MODBUS devices configurable in the Nexto CPU run in the background, with a priority below the user application
and cyclically. Thus, their performance varies depending on the remaining time, taking into account the difference between the
interval and time that the application takes to run. For example, a MODBUS device in an application that runs every 100 ms,
with a running time of 50 ms, will have a lower performance than an application running every 50 ms to 200 ms of interval.
It happens because in the latter case, the CPU will have a longer time between each MainTask cycle to perform the tasks with
lower priority.

It also has to be taken into account the number of cycles that the device, slave or server takes to respond to a request. To
process and transmit a response, a MODBUS RTU Slave will takes two cycles (cycle time of the MODBUS task), where as a
MODBUS Ethernet Server task takes only one cycle. But this is the minimum time between receipt of a request and the reply.
If the request is sent immediately after the execution of a task MODBUS cycle time may be equal to 2 or 3 times the cycle
time for the MODBUS slave and from 1 to 2 times the cycle time for the MODBUS server.

In this case: Maximum Response Time = 3 * (cycle time) + (time of execution of the tasks) + (time interframe chars) +
(send delay).

For example, for a MODBUS Ethernet Server task with a cycle of 50 ms, an application that runs for 60 ms every 100 ms,
the server is able to run only one cycle between each cycle of the application. On the other hand, using the same application,
running for 60 ms, but with an interval of 500 ms, the MODBUS performs better, because while the application is not running,
it will be running every 50 ms and only each cycle of MainTask it will take longer to run. For these cases, the worst performance
will be the sum of the Execution Time of the user application with the cycle time of the MODBUS task.

For the master and client devices the operating principle is exactly the same, but taking into account the polling time of the
MODBUS relation and not the cycle time of the MODBUS task. For these cases, the worst performance of a relationship will
be performed after the polling time, along with the user application Execution Time.

It is important to stress that the running MODBUS devices number also changes its performance. In an user application
with Execution Time of 60 ms and interval of 100 ms, there are 40 ms left for the CPU to perform all tasks of lower priority.
Therefore, a CPU with only one MODBUS Ethernet Server will have a higher performance than a CPU that uses four of these
devices.

197

5. CONFIGURATION

5.11.1.1. CPU’s Local Interfaces

For a device MODBUS Ethernet Server, we can assert that the device is capable to answer a x number of requisitions per
second. Or, in other words, the Server is able to transfer n bytes per second, depending on the size of each requisition. As
smaller is the cycle time of the MODBUS Server task, higher is the impact of the number of connections in his answer rate.
However, for cycle times smaller than 20 ms this impact is not linear and the table below must be viewed for information.

The table below exemplifies the number of requisitions that a MODBUS Server inserted in a local Ethernet interface is
capable to answer, according to the cycle time configured for the MODBUS task and the number of active connections:

Number of Active Connections

Answered requisitions
per second with the
MODBUS task cycle at
5 ms

Answered requisitions
per second with the
MODBUS task cycle at
10 ms

Answered requisitions
per second with the
MODBUS task cycle at
20 ms

1 Connection 185 99 50
2 Connections 367 197 100
4 Connections 760 395 200
7 Connections 1354 695 350

10 Connections 1933 976 500

Table 151: Communication Rate of a MODBUS Server at Local Interface

ATTENTION

The communication performances mentioned in this section are just examples, using a CPU
with only one device MODBUS TCP Server, with no logic to be executed inside the appli-
cation that could delay the communication. Therefore, these performances must be taken as
the maximum rates.

For cycle times equal or greater than 20 ms, the increase of the answer rate is linear, and may be calculated using an
equation:

N = C x (1 / T)
Where:
N is the medium number of answers per second;
C is the number of active connections;
T is the MODBUS task interval in seconds.
As an example a MODBUS Server, with only one active connection and a cycle time of 50 ms we get:
C = 1; T = 0,05 s;
N = 1 x (1 / (0,05))
N = 20
That is, in this configuration the MODBUS Server answers, on average, 20 requisitions per second.
In case the obtained value is multiplied by the number of bytes in each requisition, we will obtain a transfer rate of n bytes

per second.

5.11.2. OPC UA Server

The OPC UA Server MU214609 analyzes the performance of OPC UA communication in greater detail, including address-
ing the consumption of Ethernet communication bandwidth. This manual also discusses concepts about the operation of the
OPC UA protocol.

5.12. User Web Pages
Also called Web Visualization, or simply Webvisu, this feature allows to implement a simplified SCADA embedded into

the PLC. The Visualization screens are developed on the same enviroment of the PLC application using MasterTool IEC XE.
Once the application is downloaded, the PLC starts a web server hosting this special web page.

The complete information about this functionality can be found on Help of MasterTool IEC XE.

198

5. CONFIGURATION

5.13. SNMP
5.13.1. Introduction

SNMP (Simple Network Management Protocol) is a protocol widely used by network administrators to provide important
information and diagnostic equipment present in a given Ethernet network.

This protocol uses the concept of agent and manager, in which the manager sends read requests or write certain objects to
the agent. Through a MIB (Management Information Base) the manager is aware of existing objects in the agent, and thus can
make requests of these objects, respecting the read permissions or writing the same.

MIB is a collection of information organized hierarchically in which each object of this tree is called OID (Object Identi-
fier). For all equipments with SNMP, it is mandatory to support MIB-II, which have key information for managing Ethernet
networks.

5.13.2. SNMP in Nexto Xpress Controllers

The Nexto Xpress controllers behaves as agents in SNMP communication, with support for protocols SNMPv1, SNMPv2c,
SNMPv3 and support the MIB-II, where required objects are described in RFC-1213. The information provided by the SNMP
cannot be manipulated or accessed through the user application, requiring an external SNMP manager to perform access. The
following table describes the objects available in Nexto Xpress controllers.

OID Name Description

1.3.6.1.2.1.1 System Contains name, description, location and other equip-
ment identification information.

1.3.6.1.2.1.2 Interfaces

Contains information of the machine’s network inter-
faces. The ifTable (OID 1.3.6.1.2.1.2.2) has the indexes 6
and 7 available, which can be viewed by the network in-
terfaces statistics NET 1 and NET 2, respectively, of the
Nexto Series CPUs.

1.3.6.1.2.1.3 At Contains information of the last required connections to
the agent.

1.3.6.1.2.1.4 IP Contains statistical connections using IP protocol.
1.3.6.1.2.1.5 ICMP Contains statistical connections using ICMP protocol.
1.3.6.1.2.1.6 TCP Contains statistical connections using TCP protocol.
1.3.6.1.2.1.7 UDP Contains statistical connections using UDP protocol.

1.3.6.1.2.1.11 SNMP Contains statistical connections using SNMP protocol.

Table 152: MIB II Objects – Nexto Series SNMP Agent

By default, the SNMP agent is activated, i.e., the service is initialized at the time the controller is started. The access to the
agent information is via the Ethernet interface, TCP port 161. The following figure shows an example of an SNMP manager
reading some values.

199

5. CONFIGURATION

Figure 152: SNMP Manager Example

For SNMPv3, in which there is user authentication and password to requests via SNMP protocol, is provided a standard
user described in the User and SNMP Communities section.

If you want to disable the service, change the SNMPv3 user or communities for SNMPv1 / v2c predefined, you must access
the controller’s web page as described on the following section.

5.13.3. Configuration SNMP

SNMP settings can be changed through the System Web Page, in the CPU Management tab in the SNMP menu. After
successful login, the current state of the service (enabled or disabled) as well as the user information SNMPv3 and communities
for SNMPv1 / v2c can be viewed.

The user can enable or disable the service via a checkbox at the top of the screen.
It’s also possible to change the SNMPv3 information by clicking the Change button just below the user information. Will

open a form where you must complete the old username and password, and the new username and password. The other user
information SNMPv3 cannot be changed.

To change the data of SNMPv1/v2c communities, the process is similar, just click the Change button below the information
community. A new screen will open where the new data to the rocommunity and rwcommunity fields will be inserted. If you
fail any of the fields blank, their community will be disabled. That way, if the user leaves the two fields blank, access to the
SNMP agent will only be possible through SNMPv3.

If the user wants to return to the default settings, it must be manually reconfigure the same according to the User and
SNMP Communities section. Therefore, all current SNMP configurations will be kept in the firmware update process. These
options are shown in figure below.

200

5. CONFIGURATION

Figure 153: SNMP status configuration screen

ATTENTION

The Username and Password to access the agent via SNMP protocol are the same used to
login on the SNMP Settings web page.

5.13.4. User and SNMP Communities

To access the SNMPv1 / v2c of the Nexto Xpress controllers, there are two communities, according to following table.

Communities Default String Type
rocommunity Public Only read
rwcommunity Private Read and Write

Table 153: SNMP v1/v2c Default Communities info

It’s possible to access SNMP v3 using default user, see table below:

User Type Authentication Pro-
tocol

Authentication
Password Private Protocol Private Pass-

word
administrator rwuser MD5 administrator - -

Table 154: SNMP v3 User info

For all settings of communities, user and password, some limits must be respected, as described on the following table:

201

5. CONFIGURATION

Configurable item Minimum Size Max Size Allowed Characters
rocommunity - 30 [0-9][a-z][A-Z]@$*_.
rwcommunity - 30 [0-9][a-z][A-Z]@$*_.

V3 User - 30 [0-9][a-z][A-Z]@$*_.
Password v3 8 30 [0-9][a-z][A-Z]@$*_.

Table 155: SNMP settings limits

5.14. RTC Clock
The CPUs have an internal clock that can be used through the NextoStandard.lib library. This library is automatically

loaded during the creation of a new project (to perform the library insertion procedure, see Libraries section). The figure
below shows how to include the blocks in the project:

Figure 154: Clock Reading and Writing Blocks

5.14.1. Function Blocks for RTC Reading and Writing

Among other function blocks, there are some very important used for clock reading (GetDateAndTime, GetDayOfWeek
and GetTimeZone) and for date and time new data configuring (SetDateAndTime and SetTimeZone). These functions always
use the local time, that is, take into account the value defined by the Time Zone.

The proceedings to configure these two blocks are described below.

5.14.1.1. Function Blocks for RTC Reading

The clock reading can be made through the following functions:

202

5. CONFIGURATION

5.14.1.1.1. GetDateAndTime

Figure 155: Date and Hour Reading

Input Parameters Type Description

DATEANDTIME EXTENDED_DATE
_AND_TIME

This variable returns the value of
date and hour of RTC in the format
shown at Table 165.

Table 156: Input Parameters of GetDateAndTime

Output Parameters Type Description

GETDATEANDTIME RTC_STATUS Returns the function error state, see
Table 167.

Table 157: Output Parameters of GetDateAndTime

Utilization example in ST language:

PROGRAM UserPrg
VAR
Result : RTC_STATUS;
DATEANDTIME : EXTENDED_DATE_AND_TIME;
xEnable : BOOL;
END_VAR
--
IF xEnable = TRUE THEN
Result := GetDateAndTime(DATEANDTIME);
xEnable := FALSE;
END_IF

5.14.1.1.2. GetTimeZone

The following function reads the Time Zone configuration, this function is directly related with time in Time Zone at SNTP
synchronism service:

Figure 156: Configuration Reading of Time Zone

203

5. CONFIGURATION

Input Parameters Type Description

TIMEZONE TIMEZONESETTINGS This variable presents the reading
of Time Zone configuration.

Table 158: Input Parameters of GetTimeZone

Output Parameters Type Description

GetTimeZone RTC_STATUS Returns the function error state, see
Table 167.

Table 159: Output Parameters of GetTimeZone

Utilization example in ST language:

PROGRAM UserPrg
VAR
GetTimeZone_Status : RTC_STATUS;
TimeZone : TIMEZONESETTINGS;
xEnable : BOOL;
END_VAR
--
IF xEnable = TRUE THEN
GetTimeZone_Status := GetTimeZone(TimeZone);
xEnable := FALSE;
END_IF

5.14.1.1.3. GetDayOfWeek

GetDayOfWeek function is used to read the day of the week.

Figure 157: Day of Week Reading

Output Parameters Type Description

GetDayOfWeek DAYS_OF_WEEK Returns the day of the week. See
Section 166.

Table 160: Output Parameters of GetDayOfWeek

When called, the function will read the day of the week and fill the structure DAYS_OF_WEEK.
Utilization example in ST language:

204

5. CONFIGURATION

PROGRAM UserPrg
VAR
DayOfWeek : DAYS_OF_WEEK;
END_VAR
--
DayOfWeek := GetDayOfWeek();

5.14.1.2. RTC Writing Functions

The clock settings are made through function and function blocks as follows:

5.14.1.2.1. SetDateAndTime

SetDateAndTime function is used to write the settings on the clock. Typically the precision is on the order of hundreds of
milliseconds.

Figure 158: Set Date And Time

Input parameters Type Description

REQUEST BOOL This variable, when receives a ris-
ing edge, enables the clock writing.

DATEANDTIME EXTENDED_DATE
_AND_TIME

Receives the values of date and
hour with milliseconds. See section
165.

Table 161: Input Parameters of SetDateAndTime

Output parameters Type Description

DONE BOOL
This variable, when true, indicates
that the action was successfully
completed.

EXEC BOOL
This variable, when true, indicates
that the function is processing the
values.

ERROR BOOL This variable, when true, indicates
an error during the Writing.

STATUS RTC_STATUS Returns the error occurred during
the configuration. See Table 167.

Table 162: Output Parameters of SetDateAndTime

205

5. CONFIGURATION

When a rising edge occurs at the REQUEST input, the function block will write the new DATEANDTIME values on the
clock. If the writing is successfully done, the DONE output will be equal to TRUE. Otherwise, the ERROR output will be equal
to TRUE and the error will appear in the STATUS variable.

Utilization example in ST language:

PROGRAM UserPrg
VAR
SetDateAndTime : SetDateAndTime;
xRequest : BOOL;
DateAndTime : EXTENDED_DATE_AND_TIME;
xDone : BOOL;
xExec : BOOL;
xError : BOOL;
xStatus : RTC_STATUS;
END_VAR
--
IF xRequest THEN

SetDateAndTime.REQUEST:=TRUE;
SetDateAndTime.DATEANDTIME:=DateAndTime;
xRequest:= FALSE;

END_IF
SetDateAndTime();
SetDateAndTime.REQUEST:=FALSE;
IF SetDateAndTime.DONE THEN

xExec:=SetDateAndTime.EXEC;
xError:=SetDateAndTime.ERROR;
xStatus:=SetDateAndTime.STATUS;

END_IF

ATTENTION

If you try to write time values outside the range of the RTC, the values are converted to
valid values, provided they do not exceed the valid range of 01/01/2000 to 12/31/2035. For
example, if the user attempts to write the value 2000 ms, it will be converted to 2 seconds,
write the value 100 seconds, it will be converted to 1 min and 40 seconds. If the type value
of 30 hours, it is converted to 1 day and 6 hours, and so on.

5.14.1.2.2. SetTimeZone

The following function block makes the writing of the time zone settings:

Figure 159: Writing of the Time zone Settings

206

5. CONFIGURATION

Input parameters Type Description

TIMEZONE TIMEZONESETTINGS Structure with time zone to be con-
figured. See Table 168.

Table 163: SetTimeZone Input Parameters

Output parameters Type Description

SetTimeZone RTC_STATUS Returns the error occurred during
the reading/setting. See Table 167.

Table 164: SetTimeZone Output Parameters

When called, the function will configure the TIMEZONE with the new system time zone configuration. The configuration
results is returned by the function.

Utilization example in ST language:

PROGRAM UserPrg
VAR
Status : RTC_STATUS;
TimeZone : TIMEZONESETTINGS;
xWrite : BOOL;
END_VAR
--
//FB SetTimeZone
IF (xWrite = TRUE) THEN
Status := SetTimeZone(TimeZone);

IF Status = RTC_STATUS.NO_ERROR THEN
xWrite := FALSE;

END_IF
END_IF

ATTENTION

To perform the clock should be used time and date values within the following valid range:
00:00:00 hours of 01/01/2000 to 12/31/2035 23:59:59 hours, otherwise , is reported an error
through the STATUS output parameter. For details of the STATUS output parameter, see the
section RTC_STATUS.

5.14.2. RTC Data Structures

The reading and setting function blocks of the Nexto Series CPUs RTC use the following data structures in its configuration:

207

5. CONFIGURATION

5.14.2.1. EXTENDED_DATE_AND_TIME

This structure is used to store the RTC date when used the function blocks for date reading/setting within milliseconds of
accuracy. It is described in the table below:

Structure Type Variable Description
BYTE byDayOfMonth Stores the day of the set date.
BYTE ByMonth Stores the month of the set date.
WORD wYear Stores the year of the set date.

EXTENDED_DATE_ BYTE byHours Stores the hour of the set date.
AND_TIME BYTE byMinutes Stores the minutes of the set date.

BYTE bySeconds Stores the seconds of the set date.

WORD wMilliseconds Stores the milliseconds of the set
date.

Table 165: EXTENDED_DATE_AND_TIME

5.14.2.2. DAYS_OF_WEEK

This structure is used to store the day of week:

Enumerable Value Description
0 INVALID_DAY
1 SUNDAY
2 MONDAY

DAYS_OF_WEEK 3 TUESDAY
4 WEDNESDAY
5 THURSDAY
6 FRIDAY
7 SATURDAY

Table 166: DAYS_OF_WEEK Structure

5.14.2.3. RTC_STATUS

This enumerator is used to return the type of error in the RTC setting or reading and it is described in the table below:

Enumerator Value Description
NO_ERROR (0) There is no error.
UNKNOWN_COMMAND (1) Unknown command.
DEVICE_BUSY (2) Device is busy.
DEVICE_ERROR (3) Device with error.

ERROR_READING_OSF (4) Error in the reading of the valid date
and hour flag.

ERROR_READING_RTC (5) Error in the date and hour reading.
RTC_STATUS ERROR_WRITING_RTC (6) Error in the date and hour writing.

ERROR_UPDATING_SYSTEM
_TIME (7)

Error in the update of the system’s
date and hour.

INTERNAL_ERROR (8) Internal error.
INVALID_TIME (9) Invalid date and hour.
INPUT_OUT_OF_RANGE
(10)

Out of the limit of valid date and
hour for the system.

208

5. CONFIGURATION

Enumerator Value Description

SNTP_NOT_ENABLE (11)

Error generated when the SNTP
service is not enabled and it is done
an attempt for modifying the time
zone.

Table 167: RTC_STATUS

5.14.2.4. TIMEZONESETTINGS

This structure is used to store the time zone value in the reading/setting requests of the RTC’s function blocks and it is
described in table below:

Structure Type Variable Description
TIMEZONESETTINGS INT iHour Set time zone hour.

INT iMinutes Set time zone minute.

Table 168: TIMEZONESETTINGS

Note:
Function Blocks of Writing and Reading of Date and Hour: different libraries of NextoStandard, which have function

blocks or functions that may perform access of reading and writing of date and hour in the system, are not indicated. The
NextoStandard library has the appropriate interfaces for writing and reading the system’s date and hour accordingly and for
informing the correct diagnostics.

5.15. User Files Memory
Nexto Series CPUs have a memory area destined to the general data storage, in other words, the user can store several

project files of any format in the CPU memory. This memory area varies according to the CPU model used (check Memory
section).

In order to use this area, the user must access a project in the MasterTool IEC XE software and click on the Devices Tree,
placed at the program left. Double click on the Device item and, after selecting the CPU in the Communication Settings tab
which will be open, select the Files tab and click on Refresh, both in the computer files column (left) and in the CPU files
column (right) as shown on figure below.

Figure 160: User Files Access

After updating the CPU column of files, the root directory of files stored in the CPU will be shown. Then it will be possible
to select the folder where the files will be transferred to. The “InternalMemory” folder is a default folder to be used to store

209

5. CONFIGURATION

files in the CPU’s internal memory, since it is not possible to transfer files to the root directory. If necessary, the user can create
other folders in the root directory or subfolders inside the “InternalMemory” folder.

ATTENTION

The files contained in the folder of a project created by MasterTool IEC XE have special
names reserved by the system in this way cannot be transferred through the Files tab. If the
user wishes to transfer a project to the user memory, you must compact the folder and then
download the compressed file (*.zip for example).

In case it is necessary to transfer documents from the CPU to the PC in which the MasterTool IEC XE software is installed,
the user must follow a very similar procedure to the previously described, as the file must be selected from the right column
and the button “«” pressed, placed on the center of the screen.

Furthermore, the user has some operation options in the storing files area, which are the following:

New directory : allows the creation of a new folder in the user memory area.

Delete item : allows the files excluding in the folders in the user memory area.

Refresh : allows the file updating, on the MasterTool IEC XE screen, of the files in the user memory area and in the
computer.

Figure 161: Utilization Options

ATTENTION

For a CPU in Stop Mode or with no application, the transfer rate to the internal memory is
approximately 150 Kbytes/s.

5.16. Function Blocks and Functions
5.16.1. Special Function Blocks for Serial Interfaces

The special function blocks for serial interfaces make possible the local access (COM 1 AND COM 2) and also access to
remote serial ports (expansion modules). Therefore, the user can create his own protocols and handle the serial ports as he
wishes, following the IEC 61131-3 languages available in the MasterTool IEC XE software. The blocks are available inside the
NextoSerial library which must be added to the project so it’s possible to use them (to execute the library insertion procedure,
see MasterTool IEC XE Programming Manual – MP399609, section Library).

The special function blocks for serial interfaces can take several cycles (consecutive calls) to complete the task execution.
Sometimes a block can be completed in a single cycle, but in the general case, needs several cycles. The task execution
associated to a block can have many steps which some depend on external events, that can be significantly delayed. The
function block cannot implement routines to occupy the time while waits for these events, because it would make the CPU
busy. The solution could be the creation of blocking function blocks, but this is not advisable because it would increase the

210

5. CONFIGURATION

user application complexity, as normally, the multitask programming is not available. Therefore, when an external event is
waited, the serial function blocks are finished and the control is returned to the main program. The task treatment continues in
the next cycle, in other words, on the next time the block is called.

Before describing the special function blocks for serial interfaces, it is important to know the Data types, it means, the data
type used by the blocks.

Data type Options Description

BAUD200 Lists all baud rate possibilities (bits
per second)

BAUD300
BAUD600
BAUD1200
BAUD1800

SERIAL_BAUDRATE BAUD2400
BAUD4800
BAUD9600
BAUD19200
BAUD38400
BAUD57600
BAUD115200
DATABITS_5 Lists all data bits possibilities.

SERIAL_DATABITS DATABITS_6
DATABITS_7
DATABITS_8

Defines all modem signal possibilities for the configurations:

RS232_RTS

Controls the Nexto CPU RS-232C
port. The transmitter is enabled
to start the transmission and dis-
abled as soon as possible after the
transmission is finished. For exam-
ple, can be used to control a RS-
232/RS-485 external converter.

SERIAL_HANDSHAKE RS232_RTS_OFF
Controls the RS-232C port of the
Nexto CPU. The RTS signal is al-
ways off.

RS232_RTS_ON
Controls the RS-232C port of the
Nexto CPU. The RTS signal is al-
ways on.

RS232_RTS_CTS

Controls the RS-232C port of the
Nexto CPU. In case the CTS is dis-
abled, the RTS is enabled. Then
waits for the CTS to be enabled
to get the transmission and RTS
restarts as soon as possible, at the
end of transmission. Ex: Control-
ling radio modems with the same
modem signal.

RS232_MANUAL

Controls the RS-232C port of the
Nexto CPU. The user is responsi-
ble to control all the signals (RTS,
DTR, CTS, DSR, DCD).

SERIAL_MODE NORMAL_MODE Serial Communication Normal Op-
eration mode.

211

5. CONFIGURATION

Data type Options Description

EXTENDED_MODE

Serial Communication Extended
Operation mode in which are pro-
vided information about the re-
ceived data frame.

Defines all configuration parameters of the serial port:
BAUDRATE Defined in SERIAL_BAUDRATE.
DATABITS Defined in SERIAL_DATABITS.
STOPBITS Defined in SERIAL_STOPBITS.
PARITY Defined in SERIAL_PARITY.

SERIAL_PARAMETERS HANDSHAKE Defined in SE-
RIAL_HANDSHAKE.

UART_RX_THRESHOLD

Byte quantity which must be re-
ceived to generate a new UART in-
terruption. Lower values make the
TIMESTAMP more precise when
the EXTENDED MODE is used
and minimizes the overrun errors.
However, values too low may cause
too many interruptions and delay
the CPU.

MODE Defined in SERIAL_MODE.

ENABLE_RX_ON_TX

When true, all the received byte
during the transmission will be dis-
charged instead going to the RX
line. Used to disable the full-duplex
operation in the RS-422 interface.

ENABLE_DCD_EVENT When true, generates an external
event when the DCD is modified.

ENABLE_CTS_EVENT When true, generates an external
event when the CTS is modified.

PARITY_NONE List all parity possibilities.
PARITY_ODD

SERIAL_PARITY PARITY_EVEN
PARITY_MARK
PARITY_SPACE

SERIAL_PORT COM 1

List all available serial ports (COM
10, COM 11, COM 12, COM 13,
COM 14, COM 15, COM 16, COM
17, COM 18 and COM 19 – expan-
sion modules).

COM 2
Defines a character in the RX queue in extended mode.

RX_CHAR Data byte.
SERIAL_RX_CHAR_ EX-
TENDED RX_ERROR Error code.

RX_TIMESTAMP

Silence due to the previous charac-
ter or due to another event which
has happen before this character
(serial port configuration, transmis-
sion ending).

It has some fields which deliver information regarding RX queue
status/error, used when the normal format is utilized (no error
and timestamp information):

212

5. CONFIGURATION

Data type Options Description

RX_FRAMING_ERRORS

Frame errors counter: character in-
correct formation – no stop bit, in-
correct baud rate, among other –
since the serial port configuration.
Returns to zero when it reaches the
maximum value (65535).

RX_PARITY_ERRORS

Parity errors counter, since the se-
rial port configuration. Returns to
zero when it reaches the maximum
value (65535).

RX_BREAK_ERRORS

Interruption errors counter, since
the serial port configuration, in
other words, active line higher than
the character time. Returns to zero
when it reaches the maximum value
(65535).

SERIAL_RX_QUEUE_
STATUS

RX_FIFO_OVERRUN_
ERRORS

FIFO RX overrun errors counter,
since the serial port configuration,
in other words, error in the FIFO
RX configured threshold. Returns
to zero when it reaches the maxi-
mum value (65535).

RX_QUEUE_OVERRUN_
ERRORS

RX queue overrun errors counter, in
other words, the maximum charac-
ters number (1024) was overflowed
and the data are being overwritten.
Returns to zero when it reaches the
maximum value (65535).

RX_ANY_ERRORS
Sum the last 5 error counters
(frame, parity, interruption, RX
FIFO overrun, RX queue overrun).

RX_REMAINING Number of characters in the RX
queue.

List of critic error codes that can be returned by the serial func-
tion block. Each block returns specific errors, which will be de-
scribed below:

NO_ERROR No errors.

ILLEGAL_*

Return the parameters with invalid
values or out of range:
- SERIAL_PORT
- SERIAL_MODE
- BAUDRATE
- DATA_BITS
- PARITY
- STOP_BITS
- HANDSHAKE
- UART_RX_THRESHOLD
- TIMEOUT
- TX_BUFF_LENGTH
- HANDSHAKE_METHOD
- RX_BUFF_LENGTH

PORT_BUSY Indicates the serial port is being
used by another instance

213

5. CONFIGURATION

Data type Options Description

HW_ERROR_UART Hardware error detected in the
UART.

HW_ERROR_REMOTE Hardware error at communicating
with the remote serial port.

CTS_TIMEOUT_ON

Time-out while waiting for the CTS
enabling, in the RS-232 RTS/CTS
handshake, in the SERIAL_TX
block.

CTS_TIMEOUT_OFF

Time-out while waiting for the CTS
disabling, in the RS-232 RTS/CTS
handshake, in the SERIAL_TX
block.

SERIAL_STATUS TX_TIMEOUT_ERROR
Time-out while waiting for the
transmission ending in the SE-
RIAL_TX.

RX_TIMEOUT_ERROR

Time-out while waiting for all char-
acters in the SERIAL_RX block
or the SERIAL_RX_EXTENDED
block.

FB_SET_CTRL_
NOT_ALLOWED

The SET_CTRL block can’t be
used in case the handshake is dif-
ferent from RS232_MANUAL.

FB_GET_CTRL_
NOT_ALLOWED

The GET_CTRL block can’t be
used in case the handshake is dif-
ferent from RS232_MANUAL.

FB_SERIAL_RX_
NOT_ALLOWED

The SERIAL_RX isn’t available for
the RX queue, extended mode.

FB_SERIAL_RX_ EX-
TENDED_NOT_ALLOWED

The SERIAL_RX_EXTENDED
isn’t available for the RX queue,
normal mode.

DCD_INTERRUPT_
NOT_ALLOWED

The interruption by the DCD signal
can’t be enabled in case the serial
port doesn’t have the respective pin.

CTS_INTERRUPT_
NOT_ALLOWED

The interruption by the CTS sig-
nal can’t be enabled in case
the handshake is different from
RS232_MANUAL or in case the
serial port doesn’t have the respec-
tive pin.

DSR_INTERRUPT_
NOT_ALLOWED

The interruption by the DSR signal
can’t be enabled in case the serial
port doesn’t have the respective pin.
(Nexto CPUs don’t have this signal
in local ports)

NOT_CONFIGURED The function block can’t be used
before the serial port configuration.

INTERNAL_ERROR Indicates that an internal problem
has ocurred in the serial port.

STOPBITS_1 List all Stop Bits possibilities.
SERIAL_STOPBITS STOPBITS_2

STOPBITS_1_5

Table 169: Serial Function Blocks Data types

214

5. CONFIGURATION

5.16.1.1. SERIAL_CFG

This function block is used to configure and initialize the desired serial port. After the block is called, every RX and TX
queue associated to the serial ports and the RX and TX FIFO are restarted.

Figure 162: Serial Configuration Block

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

PARAMETERS SERIAL_PARAMETERS
This structure defines the serial port con-
figuration parameters, as described in the
SERIAL_PARAMETERS data type.

Table 170: SERIAL_CFG Input Parameters

215

5. CONFIGURATION

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- ILLEGAL_SERIAL_MODE
- ILLEGAL_BAUDRATE
- ILLEGAL_DATA_BITS
- ILLEGAL_PARITY
- ILLEGAL_STOP_BITS
- ILLEGAL_HANDSHAKE
- ILLEGAL_UART_RX_THRESHOLD
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- DCD_INTERRUPT_NOT_ALLOWED
- CTS_INTERRUPT_NOT_ALLOWED
- DSR_INTERRUPT_NOT_ALLOWED

Table 171: SERIAL_CFG Output Parameters

Utilization example in ST language, after the library Nexto Serial is inserted in the project:

PROGRAM UserPrg
VAR
Config: SERIAL_CFG;
Port: SERIAL_PORT := COM1;
Parameters: SERIAL_PARAMETERS := (BAUDRATE := BAUD9600,
DATABITS := DATABITS_8,
STOPBITS := STOPBITS_1,
PARITY := PARITY_NONE,
HANDSHAKE := RS232_RTS,
UART_RX_THRESHOLD := 8,
MODE :=NORMAL_MODE,
ENABLE_RX_ON_TX := FALSE,
ENABLE_DCD_EVENT := FALSE,
ENABLE_CTS_EVENT := FALSE);
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
Config.REQUEST := TRUE;
Config.PORT := Port;

216

5. CONFIGURATION

Config.PARAMETERS := Parameters;
//FUNCTION:
Config();
//OUTPUTS:
Config.DONE;
Config.EXEC;
Config.ERROR;
Status := Config.STATUS; //If it is necessary to treat the error.

5.16.1.2. SERIAL_GET_CFG

The function block is used to capture the desired serial port configuration.

Figure 163: Block to Capture the Serial Configuration

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

Table 172: SERIAL_GET_CFG Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

217

5. CONFIGURATION

Output parameters Type Description

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- NOT_CONFIGURED

PARAMETERS SERIAL_PARAMETERS
This structure receives the serial port con-
figuration parameters, as described in the
SERIAL_PARAMETERS data type.

Table 173: SERIAL_GET_CFG Output Parameters

Utilization example in ST language, after the library is inserted in the project:

PROGRAM UserPrg
VAR
GetConfig: SERIAL_GET_CFG;
Port: SERIAL_PORT := COM1;
Parameters: SERIAL_PARAMETERS;
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
GetConfig.REQUEST := TRUE;
GetConfig.PORT := Port;
//FUNCTION:
GetConfig();
//OUTPUTS:
GetConfig.DONE;
GetConfig.EXEC;
GetConfig.ERROR;
Status := GetConfig.STATUS; //If it is necessary to treat the error.
Parameters := GetConfig.PARAMETERS; //Receive the parameters of desired serial

port.

218

5. CONFIGURATION

5.16.1.3. SERIAL_GET_CTRL

This function block is used to read the CTS, DSR and DCD control signals, in case they are available in the serial port. A
false value will be returned when there are not control signals.

Figure 164: Block Used to Visualize the Control Signals

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

Table 174: SERIAL_GET_CTRL Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- FB_GET_CTRL_NOT_ALLOWED
- NOT_CONFIGURED

CTS_VALUE BOOL Value read in the CTS control signal.
DSR_VALUE BOOL Value read in the DSR control signal.
DCD_VALUE BOOL Value read in the DCD control signal.

Table 175: SERIAL_GET_CTRL Output Parameters

219

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Get_Control: SERIAL_GET_CTRL;
Port: SERIAL_PORT := COM1;
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
Get_Control.REQUEST := TRUE;
Get_Control.PORT := Port;
//FUNCTION:
Get_Control();
//OUTPUTS:
Get_Control.DONE;
Get_Control.EXEC;
Get_Control.ERROR;
Status := Get_Control.STATUS; //If it is necessary to treat the error.
Get_Control.CTS_VALUE;
Get_Control.DSR_VALUE;
Get_Control.DCD_VALUE;

5.16.1.4. SERIAL_GET_RX_QUEUE_STATUS

This block is used to read some status information regarding the RX queue, specially developed for the normal mode, but
it can also be used in the extended mode.

Figure 165: Block Used to Visualize the RX Queue Status

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

Table 176: SERIAL_GET_RX_QUEUE_STATUS Input Parameters

220

5. CONFIGURATION

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- NOT_CONFIGURED

RXQ_STATUS SERIAL_RX_
QUEUE_STATUS

Returns the RX queue status/er-
ror, as described in the SE-
RIAL_RX_QUEUE_STATUS data
type.

Table 177: SERIAL_GET_RX_QUEUE_STATUS Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Get_Status: SERIAL_GET_RX_QUEUE_STATUS;
Port: SERIAL_PORT := COM1;
Status: SERIAL_STATUS;
Status_RX: SERIAL_RX_QUEUE_STATUS;
END_VAR
//INPUTS:
Get_Status.REQUEST := TRUE;
Get_Status.PORT := Port;
//FUNCTION:
Get_Status();
//OUTPUTS:
Get_Status.DONE;
Get_Status.EXEC;
Get_Status.ERROR;
Status := Get_Status.STATUS; //If it is necessary to treat the error.
Status_RX := Get_Status.RXQ_STATUS; //If it is necessary to treat the error of

the RX.

221

5. CONFIGURATION

5.16.1.5. SERIAL_PURGE_RX_QUEUE

This function block is used to clean the serial port RX queue, local and remote. The UART RX FIFO is restarted too.

Figure 166: Block Used to Clean the RX Queue

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

Table 178: SERIAL_PURGE_RX_QUEUE Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It’s false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It’s false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It’s
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- NOT_CONFIGURED

Table 179: SERIAL_PURGE_RX_QUEUE Output Parameters

222

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Purge_Queue: SERIAL_PURGE_RX_QUEUE;
Port: SERIAL_PORT := COM1;
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
Purge_Queue.REQUEST := TRUE;
Purge_Queue.PORT := Port;
//FUNCTION:
Purge_Queue();
//OUTPUTS:
Purge_Queue.DONE;
Purge_Queue.EXEC;
Purge_Queue.ERROR;
Status := Purge_Queue.STATUS; //If it is necessary to treat the error.

5.16.1.6. SERIAL_RX

This function block is used to receive a serial port buffer, using the RX queue normal mode. In this mode, each character
in the RX queue occupy a single byte which has the received data, storing 5, 6, 7 or 8 bits, according to the serial interface
configuration.

Figure 167: Block Used to Read the Reception Buffer Values

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

RX_BUFFER_
POINTER POINTER TO BYTE Pointer of a byte array to receive the buffer

values.

RX_BUFFER_
LENGTH UINT

Specify the expected character number in
the byte array. In case more than the ex-
pected bytes are available, only the ex-
pected quantity will be read from the byte
array, the rest will be leaved in the RX
queue (maximum size equal to 1024 char-
acters).

223

5. CONFIGURATION

Input parameters Type Description

RX_TIMEOUT UINT

Specify the time-out to receive the ex-
pected character quantity. In case it is
smaller than the necessary to receive the
characters, the RX_TIME-OUT_ERROR
output from the STATUS parameter will be
indicated. When the specified value, in ms,
is equal to zero, the function will return the
data within the buffer.

Table 180: SERIAL_RX Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- ILLEGAL_RX_BUFF_LENGTH
- RX_TIMEOUT_ERROR
- FB_SERIAL_RX_NOT_ALLOWED
- NOT_CONFIGURED

RX_RECEIVED UINT

Returns the received characters num-
ber. This number can be within
zero and the configured value in
RX_BUFFER_LENGTH. In case it is
smaller, an error will be indicated by the
function block.

RX_REMAINING UINT
Returns the number of characters which
are still in the RX queue after the function
block execution.

Table 181: SERIAL_RX Output Parameters

224

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Receive: SERIAL_RX;
Port: SERIAL_PORT := COM1;
Buffer_Pointer: ARRAY [0..1023] OF BYTE; //Max size.
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
Receive.REQUEST := TRUE;
Receive.PORT := Port;
Receive.RX_BUFFER_POINTER := ADR(Buffer_Pointer);
Receive.RX_BUFFER_LENGTH := 1024; //Max size.
Receive.RX_TIMEOUT := 10000;
//FUNCTION:
Receive();
//OUTPUTS:
Receive.DONE;
Receive.EXEC;
Receive.ERROR;
Status := Receive.STATUS; //If it is necessary to treat the error.
Receive.RX_RECEIVED;
Receive.RX_REMAINING;

5.16.1.7. SERIAL_RX_EXTENDED

This function block is used to receive a serial port buffer using the RX queue extended mode as shown in the Serial
Interface section.

Figure 168: Block Used for Reception Buffer Reading

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

RX_BUFFER_
POINTER

POINTER TO SE-
RIAL_RX_CHAR
_EXTENDED

Pointer of a SE-
RIAL_RX_CHAR_EXTENDED array to
receive the buffer values.

225

5. CONFIGURATION

Input parameters Type Description

RX_BUFFER_
LENGTH UINT

Specify the expected character number
in the SERIAL_RX_CHAR_EXTENDED
array. In case more than the expected bytes
are available, only the expected quantity
will be read from the byte array, the rest
will be leaved in the RX queue (maximum
size equal to 1024 characters).

RX_TIMEOUT UINT

Specify the time-out to receive the ex-
pected character quantity. In case it is
smaller than the necessary to receive the
characters, the RX_TIMEOUT_ERROR
output from the STATUS parameter will be
indicated. When the specified value, in ms,
is equal to zero, the function will return the
data within the buffer.

Table 182: SERIAL_RX_EXTENDED Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- ILLEGAL_RX_BUFF_LENGTH
- RX_TIMEOUT_ERROR
- FB_SERIAL_RX_EXTENDED_NOT
_ALLOWED
- NOT_CONFIGURED

RX_RECEIVED UINT

Returns the received characters num-
ber. This number can be within
zero and the configured value in
RX_BUFFER_LENGTH. In case it is
smaller, an error will be indicated by the
function block.

226

5. CONFIGURATION

Output parameters Type Description

RX_REMAINING UINT
Returns the number of characters which
are still in the RX queue after the function
block execution.

RX_SILENCE UINT

Returns the silence time in the RX queue,
measured since the last received charac-
ter is finished. The time unit is 10 µs.
This output parameter type is important
to detect the silence time in protocols as
MODBUS RTU. It might not be the si-
lence time after the last received character
by this function block, as it is only true if
RX_REMAINING = 0.

Table 183: SERIAL_RX_EXTENDED Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Receive_Ex: SERIAL_RX_EXTENDED;
Port: SERIAL_PORT := COM1;
Buffer_Pointer: ARRAY [0..1023] OF SERIAL_RX_CHAR_EXTENDED;
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
Receive_Ex.REQUEST := TRUE;
Receive_Ex.PORT := Port;
Receive_Ex.RX_BUFFER_POINTER := ADR(Buffer_Pointer);
Receive_Ex.RX_BUFFER_LENGTH := 1024; //Max size.
Receive_Ex.RX_TIMEOUT := 10000;
//FUNCTION:
Receive_Ex();
//OUTPUTS:
Receive_Ex.DONE;
Receive_Ex.EXEC;
Receive_Ex.ERROR;
Status := Receive_Ex.STATUS; //If it is necessary to treat the error.
Receive_Ex.RX_RECEIVED;
Receive_Ex.RX_REMAINING;
Receive_Ex.RX_SILENCE;

5.16.1.8. SERIAL_SET_CTRL

This block is used to write on the control signals (RTS and DTR), when they are available in the serial port. It can also set
a busy condition for the transmission, through BREAK parameter and it can only be used if the modem signal is configured
for RS232_MANUAL.

227

5. CONFIGURATION

Figure 169: Block for Control Signals Writing

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

RTS_VALUE BOOL Value to be written on RTS signal.

RTS_EN BOOL Enables the RTS_VALUE parameter writ-
ing.

DTR_VALUE BOOL Value to be written on DTR signal.

DTR_EN BOOL Enables the DTR_VALUE parameter writ-
ing.

BREAK BOOL In case it’s true, enables logic 0 (busy) in
the transmission line.

Table 184: SERIAL_SET_CTRL Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- FB_SET_CTRL_NOT_ALLOWED
- NOT_CONFIGURED

Table 185: SERIAL_SET_CTRL Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

228

5. CONFIGURATION

PROGRAM UserPrg
VAR
Set_Control: SERIAL_SET_CTRL;
Port: SERIAL_PORT := COM1;
Status: SERIAL_STATUS;
END_VAR

//INPUTS:
Set_Control.REQUEST := TRUE;
Set_Control.PORT := Port;
Set_Control.RTS_VALUE := FALSE;
Set_Control.RTS_EN := FALSE;
Set_Control.DTR_VALUE := FALSE;
Set_Control.DTR_EN := FALSE;
Set_Control.BREAK := FALSE;
//FUNCTION:
Set_Control();
//OUTPUTS:
Set_Control.DONE;
Set_Control.EXEC;
Set_Control.ERROR;
Status := Set_Control.STATUS; //If it is necessary to treat the error.

5.16.1.9. SERIAL_TX

This function block is used to transmit a data buffer through serial port and it is only finalized after all bytes were transmitted
or after time-out (generating errors).

Figure 170: Block for Values Transmission by the Serial

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

TX_BUFFER_
POINTER POINTER TO BYTE Pointer of a byte array to transmit the

buffer values.

TX_BUFFER_
LENGTH UINT

Specify the expected character number in
the byte array to be transmitted (TX queue
maximum size is 1024 characters).

229

5. CONFIGURATION

Input parameters Type Description

TX_TIMEOUT UINT

Specify the time-out to complete the trans-
mission including the handshake phase.
The specified value, in ms, must be posi-
tive and different than zero.

DELAY_BEFORE_
TX UINT

Specify the delay, in ms, between the func-
tion block call and the transmission begin-
ning. This variable can be used in commu-
nications with some modems.

CLEAR_RX_
BEFORE_TX BOOL

When true, the RX queue and the UART
FIFO RX are erased before the transmis-
sion beginning. This behavior is typical in
half-duplex master/slave protocols.

Table 186: SERIAL_TX Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- ILLEGAL_TX_BUFF_LENGTH
- ILLEGAL_TIMEOUT
- CTS_TIMEOUT_ON
- CTS_TIMEOUT_OFF
- TX_TIMEOUT_ERROR
- NOT_CONFIGURED

TX_TRANSMITTED UINT

Returns the transmitted byte number which
must be equal to TX_BUFFER_LENGTH,
but can be smaller in case some error has
occurred during transmission.

Table 187: SERIAL_TX Output Parameters

230

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Transmit: SERIAL_TX;
Port: SERIAL_PORT := COM1;
Buffer_Pointer: ARRAY [0..9] OF BYTE := [0,1,2,3,4,5,6,7,8,9];
Status: SERIAL_STATUS;
END_VAR

//INPUTS:
Transmit.REQUEST := TRUE;
Transmit.PORT := Port;
Transmit.TX_BUFFER_POINTER := ADR(Buffer_Pointer);
Transmit.TX_BUFFER_LENGTH := 10;
Transmit.TX_TIMEOUT := 10000;
Transmit.DELAY_BEFORE_TX := 1000;
Transmit.CLEAR_RX_BEFORE_TX := TRUE;
//FUNCTION:
Transmit();
//OUTPUTS:
Transmit.DONE;
Transmit.EXEC;
Transmit.ERROR;
Status := Transmit.STATUS; //If it is necessary to treat the error.
Transmit.TX_TRANSMITTED;

5.16.2. Inputs and Outputs Update

By default, the local bus and CPU integrated I/O are updated on every execution cycle of MainTask. The Refresh functions
allows to update these I/O points asynchronously at any point of user application code.

When the function blocks to update the inputs and outputs are not used, the update is performed every cycle of the Main-
Task.

ATTENTION

At the startup of a CPU of this series, the inputs and outputs are only updated for reading
and prepared for writing when the MainTask is performed.
All other system tasks that run before MainTask will be with the inputs and outputs invalid.

5.16.2.1. RefreshIntegratedIoInputs

This function allows to update all the inputs integrated to the controller’s CPU instantly. The function has no input param-
eters and only finishes the execution after updating all the integrated inputs.

Figure 171: Refresh integrated inputs function

231

5. CONFIGURATION

5.16.2.2. RefreshIntegratedIoOutputs

This function allows to update all the outputs integrated to the controller’s CPU instantly. The function has no input
parameters and only finished the execution after updating all the integrated outputs.

Figure 172: Refresh integrated Outputs function

5.16.3. Timer Retain

The timer retain is a function block developed for applications as production line clocks, that need to store its value and
restart the counting from the same point in case of power supply failure. The values stored by the function block, are only zero
in case of a Reset Cold, Reset Origin or a new application Download (see the MasterTool IEC XE User Manual - MU299609),
when the counters keep working, even when the application is stopped (Stop Mode).

ATTENTION

It is important to stress that, for the correct functioning of the Timer Retain blocks, the
variables must be declared as Retain (VAR RETAIN). It’s also important to notice that in
simulation mode, the Timer Retain function blocks do not run properly due to need the
Nexto CPU for correct behavior.

The three blocks already available in the MasterTool IEC XE software NextoStandard library are described below (for the
library insertion proceeding, see MasterTool IEC XE Programming Manual – MP399609, section Library).

5.16.3.1. TOF_RET

The function block TOF_RET implements a time delay to disable an output. When the input IN has its state changed from
(TRUE) to (FALSE), or a falling edge, the specified time PT will be counted and the Q output will be driven to (FALSE) at the
end of it. When the input IN is in logic level 1 (TRUE), the output Q remain in the same state (TRUE), even if this happened
in the middle of the counting process. The PT time can be changed during the counting as the block assumes the new value if
the counting hasn’t finished. Figure 173 depicts the TOF_RET block and Figure 174 shows its graphic behavior.

Figure 173: TOF_RET Block

Input parameters Type Description

IN BOOL This variable, when receives a falling edge,
enables the block counting.

PT TIME This variable specifies the block counting
limit (time delay).

Table 188: TOF_RET Input Parameters

232

5. CONFIGURATION

Output parameters Type Description

Q BOOL
This variable executes a falling edge as the
PT variable (time delay) reaches its maxi-
mum value.

ET TIME This variable shows the current time delay.

Table 189: TOF_RET Output Parameters

Figure 174: TOF_RET Block Graphic Behavior

Utilization example in ST language:

PROGRAM UserPrg
VAR RETAIN
bStart : BOOL := TRUE;
TOF_RET : TOF_RET;
END_VAR

// When bStart=FALSE starts counting
TOF_RET(IN := bStart,
PT := T#20S);

// Actions executed at the end of the counting
IF (TOF_RET.Q = FALSE) THEN
bStart := TRUE;
END_IF

5.16.3.2. TON_RET

The TON_RET implements a time delay to enable an output. When the input IN has its state changed from (FALSE) to
(TRUE), or a rising edge, the specified time PT will be counted and the Q output will be driven to (TRUE) at the end of it.
When the input IN is in logic level 0 (FALSE), the output Q remain in the same state (FALSE), even if it happens in the middle
of the counting process. The PT time can be changed during the counting as the block assumes the new value if the counting
hasn’t finished. Figure 175 depicts the TON_RET block and Figure 176 shows its graphic behavior.

Figure 175: TON_RET Function Block

233

5. CONFIGURATION

Input parameters Type Description

IN BOOL This variable, when receives a rising edge,
enables the function block counting.

PT TIME This variable specifies the block counting
limit (time delay).

Table 190: TON_RET Input Parameters

Output parameters Type Description

Q BOOL
This variable executes a rising edge as the
PT variable (time delay) reaches its maxi-
mum value.

ET TIME This variable shows the current time delay.

Table 191: TON_RET Output Parameters

Figure 176: TON_RET Block Graphic Behavior

Utilization example in ST language:

PROGRAM UserPrg
VAR RETAIN
bStart : BOOL;
TON_RET : TON_RET;
END_VAR

// Quando bStart=TRUE starts counting
TON_RET(IN := bStart,
PT := T#20S);

// Actions executed at the end of the counting
IF (TON_RET.Q = TRUE) THEN
bStart := FALSE;
END_IF

234

5. CONFIGURATION

5.16.3.3. TP_RET

The TP_RET function block works as a trigger. The timer which starts when the IN input has its state changed from
(FALSE) to (TRUE), that is, a rising edge, it is increased until the PT time limit is reached. During the counting, the Q output
is (TRUE), otherwise it is (FALSE). The PT time can be changed during the counting as the block assumes the new value if
the counting has not finished. Figure 177 depicts the TP_RET and Figure 178 shows its graphic behavior.

Figure 177: TP_RET Function Block

Input parameters Type Description

IN BOOL This variable, when receives a rising edge,
enables the function block counting.

PT TIME This variable specifies the function block
counting limit (time delay).

Table 192: TP_RET Input Parameters

Output parameters Type Description

Q BOOL This variable is true during the counting,
otherwise is false.

ET TIME This variable shows the current time delay.

Table 193: TP_RET Output Parameters

Figure 178: TP_RET Block Graphic Behavior

235

5. CONFIGURATION

Utilization example in ST language:

PROGRAM UserPrg
VAR RETAIN
bStart : BOOL;
TP_RET : TP_RET;
END_VAR

// Configure TP_RET
TP_RET(IN := bStart,
PT := T#20S);

bStart := FALSE;

// Actions executed during the counting
IF (TP_RET.Q = TRUE) THEN
// Executes while the counter is activated
ELSE
// Executes when the counter is deactivated
END_IF

5.17. FTP Server
FTP (File Transfer Protocol) is a protocol that allows files to be transferred between devices. It operates in the client-server

mode, where the CPU becomes a FTP Server, storing files that FTP Clients can access for transfer, download, and upload.
The controlling FTP connection is a TCP connection established through port 21 of the FTP Server. Through port 21, the

Client and Server exchange commands and responses to manage the file transfer session.
Through the FTP protocol, the FTP Client can read and write files that are stored either in the internal memory of the CPU

or in external memory (memory card, for example) if present in the architecture. The maximum file size that can be transferred
varies according to the amount of memory available between internal and external memory. When the memory limit is reached,
the transfer will stop, and if the file has not been transferred completely, it will become a corrupted file.

ATTENTION

Downloading and uploading large files through FTP, both from internal and external mem-
ory, can affect the performance of the CPU considerably.

ATTENTION

The FTP server does not support communication through Windows File Explorer, so an FTP
Client software is required to access it.

5.17.1. Configuration

The FTP configuration is done through a dedicated section located in the Management tab of the controller’s System Web
Page, as shown below:

236

5. CONFIGURATION

Figure 179: FTP Server Configuration Screen

FTP is a separate feature from MasterTool IEC XE, meaning it does not require any interaction with the programming tool.
The settings applied on the FTP Server section take effect when confirmed through the Apply button and are automatically
saved in the controller. As long as the functionality is enabled, it will resume operation even after the device is restarted.

5.17.1.1. General Configuration

5.17.1.1.1. Enable Server

Allows to activate or deactivate the functionality. When the FTP server is enabled, the settings made through the System
Web Page are applied to the configuration files. That means the server is available according to the configuration made. If FTP
is disabled, the configuration is still stored, but the service cannot be used.

5.17.1.1.2. Enable Security

Enables and disables encrypted communication. This communication is done through Explicit FTPS, also known as FT-
PES. This is a secure extension of the FTP protocol, which adds a layer of encryption to the transfer.

In this type of communication, when a client-server connection is established, instead of immediately starting the data
transfer, the FTP Client sends an AUTH SSL command to request a secure connection. Then, when enabling encrypted
communication, the UCP generates a self-signed certificate to guarantee communication using the SSL (Secure Sockets Layer)
protocol.

When the FTP Client performs the authenticated connection, the certificate and its respective information will be displayed,
allowing Explicit FTPS communication (FTP over SSL) to be established through port 21.

ATTENTION

The FTPES certificate is valid for one year from the date it was created. To generate a new
certificate, simply reapply the configuration.

5.17.1.1.3. Read-only Access

Enables and disables limiting write and read access to the Server. By default, the parameter is enabled.
When the parameter is enabled, the FTP Client has read-only access without the possibility to add or remove any files from

the FTP Server. In this case, the only operation allowed is uploading files, that is, transferring them from the Server to the
Client. When the parameter is disabled, all operations can be performed.

237

5. CONFIGURATION

5.17.1.1.4. Idle Timeout (Seconds)

Sets the maximum time the connection will be maintained before the FTP Server closes it due to inactivity. In other words,
once the connection to a FTP Client is opened, if there is no activity after the Idle Timeout, the connection to the Client is
closed by the Server.

The parameter can be configured with values between 10 to 60 seconds, the default being 60 seconds.

5.17.1.2. User Configuration

5.17.1.2.1. Username

User or Username required for the Client to connect to the Server.
If a new configuration is made, the previous one is removed. In other words, there is only one FTP user, but this one can

be used for multiple connections.

5.17.1.2.2. Password

Manages the authentication key so the FTP Client can connect to the FTP Server.

There is no password recovery so, if the password has been lost, it is necessary to add a new user configuration.

Configurable Item Minimum Size Maximum Size Allowed Characters Default
Username 4 30 [a-z][A-Z][0-9]@$*_. admin
Password 4 30 [a-z][A-Z][0-9]@$*_. admin

Table 194: FTP User Settings

5.17.1.3. Status

5.17.1.3.1. Current State

Displays the current status of the FTP Server. The possible states are "Running", "Not Running", and "Restarting Service".
Each configuration applied will restart the service.

5.17.1.3.2. Connected Clients

Shows the user the current number of active connections.
The FTP Server accepts a maximum of two active connections simultaneously. Some FTP Clients, such as Filezilla, use a

feature called Multithread File Transfer to improve the efficiency and speed of the transfer. This feature allows the FTP Client
to open more than one connection for the transfer of a file. Consequently, when using an FTP Client of this type, just one
Client already counts as two active connections on the Server.

Other FTP Clients, such as the command terminal, only use one active connection, allowing two FTP Clients to connect to
the Server simultaneously.

5.18. Firewall
5.18.1. Introduction

The Firewall is designed to increase the security of the device while it is in use. The main function of the Firewall is to
filter data packets coming into and leaving the device. The implemented filter uses information from each data packet to decide
whether that packet is allowed. The main parameters used are the input/output interfaces, the port, the transport layer protocol,
and the source and destination addresses.

238

5. CONFIGURATION

5.18.2. Configuration

Firewall configuration is done through a dedicated section located in the Management tab of the controller’s System Web
Page, as shown below:

Figure 180: Firewall Configuration Screen

The Firewall is a separate feature from the MasterTool IEC XE, that is it doesn’t require any interaction with the program-
ming tool. Settings applied on the Firewall section take effect when confirmed with the Apply button, and are automatically
saved in the controller. If the feature is enabled, it will operate again even after rebooting the device.

The following sections describe the possible settings for the Firewall, divided according to the tables of the Firewall section.

5.18.3. General Configuration

The image below shows all the settings in the General Configuration table:

239

5. CONFIGURATION

Figure 181: Firewall General Settings Table

This table expands dynamically by selecting the options to enable UDP and TCP packet filters, revealing all the items that
can be configured. The first item in this table, Enable Firewall, is used to enable and disable this functionality. When the
Firewall is enabled, the web page settings, when submitted to the device, will be applied to the configuration files, and then
the Firewall will filter what has been configured. If the Firewall is disabled, the configuration that was made is stored, but the
rules are not applied in the controller.

The field Disable ICMP (Ping) enables or disables protection against the ICMP protocol. When protection is enabled,
the controller will not respond to Ping requests, since it will drop packets that use the ICMP protocol. When disabled, the
operation of the device for Ping responses maintains its normal behavior.

When enabled, the fields that enable UDP and TCP packet filtering, filter these protocols according to the limits configured
in their respective fields. The packet filtering rule works like this: for a packet to be accepted, there must be "credits" available,
and one credit is used to accept a data packet.

The setting of the field Burst of XXX Packets sets the initial value of packages (credits), which will be accepted. In this way,
it is possible to set an overflow limit for these packets, where if there is a large flow of packets, only the configured amount
will be accepted. The XXX Packages per Second field sets how many credits that rule will earn per second. For example, if the
value is 5, each second, the rule will receive five new credits, so it will be able to accept five more packages. The limitation
for this increment in the number of credits is the configuration of Burst of XXX Packets itself, and the limit set here is not
exceeded, even with the increment of packets every second. These settings are applied as a stock, where upon receiving a data
packet, it is first checked if there is any credit available in the stock, and then a decision is made whether or not to accept the
package. If the packet is accepted in this quantity filter, it is forwarded to the filter of the other firewall rules.

The setting Filter XXX per IP causes the rule to differentiate the source addresses of each packet and apply the packet per
second and packet overflow filters individually to each IP address. So, going back to the previous example, it can be considered
that each source address has its stock of credits, and one address cannot use the credits that are in the stock reserved for others.

ATTENTION

Negative values are not allowed for the XXX Packages per Second and Burst of XXX Packets
fields. If negative values are set, when applying the settings an error message will appear on
the screen indicating the field that had a conflict. If the filter is enabled, but the values in
these fields are left at 0, the filter is not applied.

The settings in this table are applied with the Apply button that appears in figure 183.
The fields for selecting both incoming and outgoing policies have options to accept and drop. if the Firewall is active,

when data packets arrive, all the rules that have been configured are checked, and then the policy configured for these packets
is applied, whether Accept or Drop. So if an accept policy is set, Accept, all packets that do not match any configured rule will
be accepted by the firewall, and if a reject policy is set, Drop, they would all be dropped.

240

5. CONFIGURATION

5.18.4. User Rules

The User Rules table was created to allow greater control over the firewall’s rule settings. With it, you can configure
different rules dynamically and with more precise filters.

Figure 182: Firewall User Rules Configuration Table

This table changes its format according to the selected Source Type, which can be IP or MAC. When the type is IP, the table
has the items shown in figure above, but when the type is selected as MAC, the source and destination mask fields disappear, as
well as the Destination Address field. The item Source Address now accepts a MAC address as input. Also, an address-based
MAC rule can only be configured as an input rule. In other words, the Direction field will be forced with the value INPUT.

With the Source Address and Destination Address fields, you can enter the addresses that will be configured for that specific
rule, and using the Source Mask and Destination Mask fields, you can configure a network range for this rule. If you only
configure the address, only the address will be assigned to the rule but with different netmask configurations, you can get IP
groups of various sizes to be applied to the rule.

Interface configuration makes it possible to individually select each physical or virtual interface available to the controller.
Based on which interface you select for a given rule, only data packets entering or leaving the interface will be filtered by the
Firewall. If you use the option Any, this rule will have no interface filter. So the filtering rule will be valid for all available
interfaces.

The Action field has three configuration options: ACCEPT, DROP, and REJECT. The action sets up what should be done
with the package whose characteristics match the rule applied. If the chosen action is ACCEPT, the data packet having
characteristics according to the rule will be accepted. If it is DROP, the packet will be dropped, and no reply will be sent to the
sender of the package. Finally, if it is set to REJECT, the packet will be rejected, and a reply will be sent to the sender, stating
that the requested host is inaccessible.

The Service Port field, is used to indicate which ports will be configured in this rule. All service ports that have a certain
protocol or communication standard for the controller, such as the MODBUS protocol that has the standard port 502, are
available with the service name and port used next to it. Thus, if you configure the rule for the MODBUS protocol, port 502
will be applied if you configure the rule for the WebVisu service, port 8080 will be applied, and so on for the other protocols
listed in the checkbox.

This field also has two other settings, which are Any and Other. When you select the Any option, the rule is applied to all
service ports except services except port 80 then two rules are created using the following port ranges: 1:79 and 81:65535. If
you select the Other option, a text box appears in which you can configure the port you want, except for port 80. To configure
a port, you can type its number in the text box, but if you want to add more than a single port, you must use the "&" separator,
and if you want to insert a range of ports, simply enter the start and end port using the separator ":".

Example of configuring ports 120, 144, and the range 1300 to 1450 in the same field: 120 & 144 & 1300:1450.
This field doesn’t accept values outside the range 1:65535, port 80, or port repeats.

241

5. CONFIGURATION

The HTTP port 80 can only be set by selecting it from the list of known protocols and cannot be applied to the NET 1
interface. So if the HTTP protocol is chosen, the Interface field NET 1 and Any won’t be selectable.

In the Protocol field, you can select between UDP, TCP, and UDP|TCP protocols. If you select the UDP|TCP option, two
rules will be created on the firewall, one for each transport protocol.

In the Direction field, you can select between INPUT, OUTPUT, and INPUT|OUTPUT. These options cause the rule to be
applied to packets arriving at the device, option INPUT, or leaving it, option OUTPUT. If the joint option is configured, two
rules will be created, one with each direction option.

The figure below demonstrates how a rule is applied:

Figure 183: Firewall User Rules Enforcement Table

After filling in the fields as you wish to configure the firewall rule, you must click the Add to list button. By doing this,
all the settings will be analyzed to check if there are invalid values or if there is any duplicate rule. It’s impossible to add two
rules with the same address, mask, interface, port, and direction parameters. If a conflict is found, a message will be displayed
indicating the field that contains an invalid setting or the ID number of the rule in the table whose settings caused the conflict
with the newly configured one.

After all, parameters are checked, the rule will be added to the list below the configuration table. This list expands
automatically as rules are added or deleted. If you want to exclude a rule from the list, you can place the mouse over the one
you want to exclude. When you do this, a red X button will appear on the right, as shown in the previous figure. By clicking it,
the rule will be deleted from the table.

When adding new rules, or deleting an existing one, in the rules table, the Apply button below must be clicked for the
configuration to be applied to the device.

ATTENTION

During the application of firewall rules, there may be a momentary instability in Ethernet
communication.

5.19. OpenVPN
5.19.1. Introduction

VPN (Virtual Private Network), used for surfing unsecured networks, transmitting data, or simply accessing the Internet
with a high level of security and privacy. The VPN virtual network can be understood as a tunnel in which information travels
securely, protected by security certificates and keys. OpenVPN is an open-source service, which means that it is free to use
and distribute, and its source code is open for modifications if needed.

242

5. CONFIGURATION

The main purpose of a VPN is to communicate securely over an unsecured network. To make this possible, data encryp-
tion is used based on certificates and keys generated using TLS, Transport Layer Security, a protocol that performs 256-bit
encryption, one of the most secure.

To perform the configuration of the OpenVPN client or server, the OpenVPN page was created in the Management tab of
the CPU’s System Web Page. As shown in the figure below.

Figure 184: OpenVPN Configuration Screen

Because it is located within the Management tab, access to this page is password protected. The following sections describe
the settings and functionality of this page.

5.19.2. Import Configuration

To quickly and easily configure the VPN on your device, you can use the Import button that appears in the picture 184 in the
upper right corner of the page. Clicking on this button opens a file explorer window where you can select a configuration file.
Files with extension .conf or .ovpn should be selected. When you select a file, its contents will be read and the configuration
parameters present will fill their respective configuration fields on the web page.

For the file’s parameters to be interpreted correctly, they must follow standard OpenVPN configuration file syntax.
If there are security files, certificates, or keys, written in the configuration file, along with the other parameters, they will

be read and separated into separate files within the controller for use.

ATTENTION

Do not use spaces to separate the words in the name of the ".conf" files. Instead, use "_" to
separate them.

243

5. CONFIGURATION

5.19.3. OpenVPN Configuration

Here is an image with all the settings for an OpenVPN server:

Figure 185: OpenVPN Server Configuration Table

Here is an image with all the settings for an OpenVPN client:

Figure 186: OpenVPN Client Configuration Table

This section shows how OpenVPN configuration is performed. The settings will be divided into three parts: settings
common to both operating modes, settings unique to a server, and settings unique to a client.

244

5. CONFIGURATION

5.19.3.1. Common Configurations

Looking at the figures with the client configurations, figure 186, and the server configuration, figure 185, you can identify
that several parameters are the same for both configurations. These are:

5.19.3.1.1. Mode

With the configuration of the Mode, you can select between two options, client or server. When you select one of the two
modes, the settings table changes automatically to allow the configuration of the necessary fields for each mode of operation.

5.19.3.1.2. Protocol

This field configures which transport protocol will be used for VPN communication. It can be set between UDP and TCP.

ATTENTION

The configuration of the server and all its clients must be the same. With a divergent config-
uration, OpenVPN is not able to perform communication.

5.19.3.1.3. Logs level

This field sets the level that the log file will receive. The setting ranges from 0 to 5, 0 being the most basic level and 5
being the most advanced.

Level 0 only displays logs about some critical failure in OpenVPN and levels 4 and above are used for debugging as there
is a lot of information being written to the log file. For normal operation, it is recommended to use value 3.

This field only accepts numbers as input. You are not allowed to use letters or special characters.

5.19.3.1.4. Keep Alive Ping

This field sets the time, in seconds when the Ping request will be forwarded. This request serves to verify the connection
between the server and the clients.

This parameter can be set on both the server and the OpenVPN clients, but if this parameter is set on the server, the clients
will assume the server’s value and not the value set on them. If the server doesn’t have such a setting, each client assumes its
setting normally. If you want to disable pinging between the server and the clients, set the value to 0.

This field only accepts numbers as input. You are not allowed to use letters or special characters.

5.19.3.1.5. Keep Alive Timeout

This field sets the time, in seconds when the timeout of the Ping request will occur. After the expiration of this time,
without a response from the other VPN device, it will be considered disconnected.

This parameter can be set on both the server and the OpenVPN clients, but if this parameter is set on the server, the clients
will assume half of the server’s value and not the value set on them. Clients receive half the amount to ensure that they are
disconnected in case the server disconnects. If the Server does not have such a setting, each client assumes its setting normally.
If you wish to disable this feature, set the value to 0.

This field only accepts numbers as input. You are not allowed to use letters or special characters.

5.19.3.1.6. Security Files

In the fields CA Certificate, Device Certificate, Device Key and TA Key, you must select which security file, certificate, or
key, will be used to establish the OpenVPN communication. The options in each field, combobox, are filtered according to the
type of key file or certificate, although there is no differentiation between keys and certificates.

To be possible to select a file, it must first have been imported.
All security files are required for correct communication to be established between clients and the VPN server, except for

TAP Key. This key is optional for communication, but if it is used on the server, it becomes mandatory for all clients on the
server.

See the TLS Key and Certificate Management section for further information about generating certificates and security
keys based on TLS.

245

5. CONFIGURATION

5.19.3.1.7. TA Key

In the field TA Key it is set which type of encryption will be applied to the TA Key. This field stays hidden until you select a
file for the TLS key because it is only used in conjunction with this key. The default value of this parameter is SHA1, but you
can select from the following values: SHA256, SHA512, and MD5, in addition to the default SHA1.

ATTENTION

This configuration needs to be the same between the clients and the server in the same
OpenVPN network. If the value of this field is different between the client and server, the
connection will not be established.

5.19.3.2. Exclusive Server Configurations

The exclusive server configurations, seen in figure 185, are described below.

5.19.3.2.1. Network Address

The IP range that will be used to assign the server and client addresses for the VPN network is configured by the server by
setting the IP Address and Mask Address fields. All IPs that will be assigned to the clients and the server will be taken from
the specified range.

The server’s IP address is always the first available value in the configured range, and for IP assignments to clients, the
values still available in the range are used, so the first available value is assigned as clients make their connection. For example,
if a network is configured with the addresses 10.8.12.4 and mask 255.255.255.248, the server will assume IP 10.8.12.5 which
is the first available address in the configured range. However, if mask 255.255.255.255.0 is set, the server will assume IP
10.8.12.1, which is the first available address in the range.

The IP and Mask address fields only accept settings that have the syntax of an IP address and mask address, respectively.
If anything out of the standard is configured, an alert message will be displayed, informing you that an error has occurred.

5.19.3.2.2. Communication between Clients

In this field, you can enable or disable communication between clients in the VPN network. When the option is selected
as Disabled, only client-server communication can be performed directly. If the option selected is Enabled, it will allow
communication between the clients themselves in addition to the client-server communication.

5.19.3.2.3. Maximum Connected Clients

In this field, you can set the maximum number of clients that can connect to the server simultaneously. This field accepts
only numeric characters, and the minimum value is 1.

5.19.3.2.4. Private Networks

When you select OpenPVN’s operating mode as a server, a table will be displayed, normally hidden, which allows the
configuration of private networks that can be below the server and each client.

246

5. CONFIGURATION

Figure 187: OpenVPN Private Network Configuration Table

To configure a private network that is below the server, simply select the network type as Server and configure the network
addresses and mask. Configuring a private network for a client requires, in addition to setting the type as Client, to enter the
Common Name of the client that owns the network being configured.

The Common Name of a client is set when generating the Device Certificate. This parameter is entered when creating the
certificate and is unique for each client and server. The configuration of these private networks creates a routing table that will
be checked when receiving or sending packets over the VPN.

Figure above, shows a configuration of a subnet 80 on the OpenVPN server, then a routing rule will be configured that will
forward the data packets that will be received by the VPN to the device interface configured on this network. It also creates a
rule, internal to the server, that if a data packet has the subnet 70, this packet will be routed and forwarded through the VPN
tunnel. The same behavior occurs with the client2 client, but with the subnets switched, because below this client is the 70
subnet and it will forward packets with the 80 subnet to the VPN tunnel.

See the following figure for an example of architecture:

Figure 188: Architecture Example with Private Networks

247

5. CONFIGURATION

In the example picture, the NX3008 on the left has a private network 80 configured on its NET 2, and connected to it is an
NX3003 on the same network. The NX3008 on the right has a private network 70 configured on its NET 2 and connected to it
is an HMI, on the same network. The example architecture realizes the communication between the NX3003 and HMI devices
over VPN by configuring their respective private networks.

After filling the fields, shown in the figure 187, with the desired configuration, you must click on the blue + button that
appears on the far right of the configuration fields, so that the rule is added to the table. If you want to delete a rule, drag your
mouse over the rule you want to remove, and a red X will appear on the right, as shown in the image 187. By clicking on this
X, the rule is removed from the table.

For the settings present in the table to be applied to the device you must click the Apply button and confirm the operation
in the confirmation window that will appear. When the rules are applied, a message will be displayed indicating whether the
operation was successful or not.

5.19.3.3. Exclusive Client Configurations

There is only one configuration unique to OpenVPN clients on the page, which you can see in the picture 186. This
configuration is the IP Remote.

5.19.3.3.1. Remote IP

The Remote IP field sets the address where the VPN server is expecting communication from the clients. If an OpenVPN
server is established on a computer, the remote IP configuration must be done according to the IP address of this computer.
This field also accepts host names as the remote address, so you can set an IP or a hostname in this parameter.

ATTENTION

Because of the need to allow for such different parameters, IPs, and host names, the only
check that exists in this field is whether or not data exists. Be careful when performing the
configuration.

5.19.3.4. Application Settings

To enable the functionality, the checkbox Enabled, shown in the figure above, must be checked. If you just want to apply
the settings you have made and not enable OpenVPN, uncheck this checkbox.

After you have made all the desired settings, the settings must be applied to the device, to do this use the Apply button.
This button is shown in the figure 186 in the lower right corner. When the settings are applied and the VPN is enabled, the web
page will perform an automatic scroll to the OpenVPN status table, displayed in the Status Table section.

5.19.4. Security Files

Security files are used to establish OpenVPN’s communication securely by performing the role of encrypting and decrypt-
ing the data packets that will travel through the VPN tunnel. In the TLS Key and Certificate Management section, it is described
how to generate TLS keys and certificates. Here is a screenshot that shows the section responsible for managing the security
files:

248

5. CONFIGURATION

Figure 189: OpenVPN Security Files Table

In this section of the System Web Page, you can manage the security files. You can import files, monitor the validity of
certificates, download files uploaded to the device, and delete files that have been uploaded.

By clicking the Choose files button, you can import certificates and keys, these files must have the respective extensions
.crt and .key. This button opens a file explorer window and allows the selection of one file, i.e. multiple files.

ATTENTION

There is a limit of 12 files that can be imported into the controller.

The control of the files is done in the table, which is shown in the picture 189. This table adds new items, or removes them,
as the import or delete operations occur. You can identify whether the file is a key or a certificate by the second item in the
list, the Type, which indicates what that file is. For the certificates, their commons names and their expiry dates, both start and
expiry, are also displayed.

You can recover a file that has been imported into the part and also delete it. When you drag the mouse over a file in
the table, two buttons appear, one for downloading and one for deleting. The download button is a black arrow pointing
downwards, and the delete button is a red X.

5.19.5. Status Table

Designed to allow for data monitoring, OpenVPN’s status table automatically expands as you change settings and displays
various data about the connection such as the state of the VPN, the VPN IP assigned to that device, the data being transmitted,
and the security files being used for communication.

249

5. CONFIGURATION

Figure 190: OpenVPN Status Table with Feature Disabled

When VPN is disabled, the table has few parameters. The field Current State indicates whether the VPN is enabled or not,
and the other fields show which certificates and keys are configured for VPN communication. If one of the security files has
not been selected, the character "-" will appear instead of its name, indicating that there is no file configured.

The common name fields for the CA and the device display the names given to the respective certificates, certificate
authority, and device.

Next to the file name of each certificate is displayed the remaining time, in days, until its expiration date.

Figure 191: OpenVPN Status Table with Feature Enabled

When the functionality is enabled and the settings are applied on the device, the table has its cells dynamically modified so
that the remaining information is displayed. Information about the OpenVPN connection status can be found in the first two
topics of the list.

250

5. CONFIGURATION

The item Current State has the states of Not Running, Starting service..., and Running, which indicate respectively that the
VPN is disabled, is starting or is enabled.

The item Connection State has the states Not connected, Connecting..., and Connected.
The other information that can be obtained from this table is the total connection time, the device’s IP address, and the

amount of data sent and received, in bytes. The status of how many clients are currently connected is only displayed when
OpenVPN is operating as a server.

5.19.6. Download Section

You can check the information generated by OpenVPN through status and log files. The list of files to download is only
displayed when there is a file to download. If there is none, the message "No file found in the controller!" is displayed. Clicking
on any of the links will download the requested file through the browser.

Figure 192: OpenVPN Download Section

The download file list is only displayed when there is a file to download. If there is no file, the list item remains hidden.
Clicking on any of the links will download the requested file through the browser.

5.19.7. Architectures Configuration

This section will cover some possible configurations for OpenVPN, such as Host-to-Host, Host-to-Site, and Site-to-Site
architectures.

5.19.7.1. Host-to-Host Configuration

Below is a picture that represents a Host-to-Host connection:

251

5. CONFIGURATION

Figure 193: Example of Host-to-Host architecture

This topology allows the connection between two VPN hosts. Both hosts can be chosen to be configured as the server, then
the other should be configured as the client, or both hosts can be configured as clients and have a third host that will be the
server for the VPN network.

Setting up this type of architecture doesn’t require any specific configuration. In other words, there is no restriction on the
settings available on the OpenVPN web page.

5.19.7.2. Host-to-Site Configuration

Below is a picture that represents a Host-to-Site connection:

Figure 194: Example of Host-to-Site architecture

This topology allows the connection between two VPN hosts, but one of these hosts also acts as a gateway to the VPN
network. Through this gateway, routing is performed to set up communication between hosts A, B1, B2, and Gateway B. In
this scenario, either Host A or Gateway B can be the server. When one is the server on the network, the other will be the client.

The hosts, B1 and B2, that are on a private Lan B network below Gateway B, don’t need to support OpenVPN to be able
to communicate since all communication is handled by the VPN network gateway.

To enable communication between all devices on the network, you need to create routing rules for the VPN tunnel. Please
refer to the section Private Networks to see how to create private network rules.

This VPN connection architecture requires some specific configurations. The server must have its topology configuration
as a Subnet, this being the default configuration of the controller, to configure the private networks under Gateway B, as seen
in the image above.

You also need to enter the address of the private network, Lan B, that will be communicating through the VPN. This
configuration is done using the command push "route Lan_B_IP Lan_B’s_Mask" and is required regardless of whether the
private network is located below the client or the OpenVPN server, but if the private network is below the VPN client, you
must add, in addition to this command, the following configuration: route route Lan_B_IP Lan_B’s_Mask. These settings are
written to the VPN server’s configuration file.

252

5. CONFIGURATION

5.19.7.3. Site-to-Site Configuration

Below is a picture that represents a Site-to-Site connection:

Figure 195: Example of Site-to-Site architecture

This topology allows the connection between two VPN hosts, both of which acts as a gateway to the VPN network. Through
these gateways, access is provided to establish communication between hosts A1, A2, B1, B2, Gateway A, and Gateway B. In
this scenario, any gateway can assume the role of a server, so the other will be the client.

None of the hosts that are in a private network below one of the two gateways need to support OpenVPN to be able to
communicate, since all communication is handled by the VPN network gateways.

To enable communication between all devices on the network, you need to create routing rules for the VPN tunnel. Please
refer to the section Private Networks to see how to create private network rules.

The configurations for this architecture need the same specific settings described in section Host-to-Site Configuration,
with the difference that now, there are two private networks, and both must follow the configuration that has been demonstrated.
Assuming that Gateway A is the server on this connection, you should add the following commands to the configuration file:
push “route Lan_A_IP Lan_A’s_Mask”, route Lan_B_IP Lan_B’s_Mask, and push “route Lan_B_IP Lan_B’s_Mask”. If the
server is Gateway B, in the configuration file it would be added: push “route Lan_B_IP Lan_B’s_Mask”, route Lan_A_IP
Lan_A’s_Mask, and push “route Lan_A_IP Lan_A’s_Mask”.

5.20. Motion Control (Softmotion)
The XP350 and XP351 Nexto Series PLCs, support Motion Control functionality (Softmotion), enabling applications

with up to 3 axis at 8 ms. For more detailed information or examples of use, consult the CODESYS Help at: https://www.
helpme-codesys.com/codesys-softmotion.html.

Due to memory limitations, the XP350 and XP351 do not support the AxisGroup Object.

253

https://www.helpme-codesys.com/codesys-softmotion.html
https://www.helpme-codesys.com/codesys-softmotion.html

6. MAINTENANCE

6. Maintenance
6.1. Diagnostics

Nexto Xpress controllers permit many ways to visualize the diagnostics generated by the system, which are:

Diagnostics via LED
Diagnostics via System Web Page
Diagnostics via Variables
Diagnostics via Function Blocks

The first one is purely visual, generated through two LEDs placed on the front panel (PWR and DG). The next feature is
the graphic visualization in a System Web Page. The diagnostics are also provided as global symbolic variables to be used
on the user application, for instance, being presented in a supervisory system. The last ones present specific conditions of the
system functioning.

These diagnostics function is to point possible system installation or configuration problems, and communication network
problems or deficiency.

6.1.1. Diagnostics via LED

Nexto Xpress controllers have a power (PWR) and a diagnostic indication (DG) LEDs. The following table shows the
meaning of each state and its respective descriptions:

PWR DG Description Causes Priority

Off Off Not used No power supply or Hard-
ware problem -

On Off Controller is booting - -

On On
CPU is in RUN state, and
there are no active diagnos-
tics

- 5 (low)

On Blinking 1x CPU is in STOP state or no
application loaded - 2

On Blinking 2x There are active diagnostics - 3

On Blinking 3x Data forcing
Some memory area is being
forced by the user through
MasterTool IEC XE

4

On Blinking 4x Hardware error Internal hardware error 1

On Blinking 5x Power Failure
External power supply volt-
age is lower than acceptable
threshold

0 (high)

Table 195: Description of the Diagnostic LEDs States

254

6. MAINTENANCE

6.1.2. Diagnostics via System Web Page

As already known on Nexto Series, Nexto Xpress provides access to the operation states through a WEB page.
The utilization, and dynamics, is very intuitive and facilitates the user operations. The use of a supervisory system can be

replaced when it is restricted to system status verification.
To access the controller WEB page, it is just to use a standard navigator (Internet Explorer 7 or superior, Mozilla Firefox

3.0 or superior and Google Chrome 8 or superior) and type, on the address bar, the controller IP address (e.g. Ex.: http:
//192.168.15.1). First, the controller information is presented, according to figure below:

Figure 196: Initial Screen

The user can choose from three language options: Portuguese, English and Spanish. The desired language is selected
through the upper right menu. Additionally, the management tab has other features like Firmware Update and SNMP.

Firmware Update tab is restricted to the user, that is, only for internal use of Altus. In cases where the update is performed
remotely (via a radio or satellite connection for example), the minimum speed of the link must be 128Kbps.

6.1.3. Diagnostics via Variables

Nexto Xpress controllers offers a set of global symbolic variables, which provides several diagnostics information related
to the hardware and software. These symbolic data structures are automatically created by the MasterTool IEC XE.

6.1.3.1. Summarized Diagnostics

The following table shows the meaning of summarized diagnostics:

DG_XP3xx.tSummarized.* Type Description
bHardwareFailure BOOL TRUE – Controller has internal hardware failure.

FALSE – The hardware is working properly.

bSoftwareException BOOL TRUE – One or more exceptions generated by the
software.
FALSE – No exceptions generated in the software.

bCOM1ConfigError BOOL TRUE – Error during/after the COM 1 serial inter-
face configuration.
FALSE – Correct COM 1 serial interface configu-
ration.

255

http://192.168.15.1
http://192.168.15.1

6. MAINTENANCE

DG_XP3xx.tSummarized.* Type Description

bNET1ConfigError BOOL TRUE – Error during/after the NET 1 Ethernet in-
terface configuration.
FALSE – Correct NET 1 Ethernet interface con-
figuration.

bInvalidDateTime BOOL TRUE – Invalid date/hour.
FALSE – Correct date/hour.

bRuntimeReset BOOL
TRUE – The RTS (Runtime System) has been
restarted at least once. This diagnostics is only
cleared during the system restart.
FALSE – The RTS (Runtime System) is operating
normally.

bRetentivityError BOOL TRUE - Error occurred while saving the retentive
data.
FALSE – Valid data in the retentive memory dur-
ing start up.

bIntegratedIODiagnostic BOOL TRUE - There is some diagnostic in the Integrated
I/O (see detailed)
FALSE – No diagnostic in the Integrated I/O

bUSBDiagnostic BOOL TRUE - There is some diagnostic in the USB (see
detailed)
FALSE – No diagnostic in the USB

Table 196: Summarized Diagnostics

Notes:
Hardware Failure: In case the Hardware Failure diagnostic is true, the controller must be sent to Altus Technical Assis-

tance, as it has problems in the RTC or other hardware resources.
Software Exception: In case the software exception diagnostic is true, the user must verify his application to guarantee

it is not accessing the memory wrongly. If the problem remains, the Altus Technical Support sector must be consulted. The
software exception codes are described next in the controller’s detailed diagnostics table.

Retentivity Error: If Retentive error flag is true, Altus Technical Support must be consulted. Reset Cold and Reset Origin
commands triggered by MasterTool does not cause the indication of this diagnostic.

6.1.3.2. Detailed Diagnostics

The tables below contains Nexto Xpress controllers’ detailed diagnostics. It is important to have in mind the observations
below before consulting them:

Visualization of the Diagnostics Structures: The Diagnostics Structures added to the Project can be seen at the item
Library manager of MasterTool IEC XE tree view. There, it is possible to see all datatypes defined in the structure
Counters: All controller diagnostics counters return to zero when their limit value is exceeded

DG_XP3xx.tDetailed.* Type Description

Target.*
dwCPUModel ENUM (BYTE) Controller model, ex: MODEL_XP325

abyCPUVersion BYTE ARRAY(4) Firmware version
abyBootloaderVersion BYTE ARRAY(4) Bootloader version

Hardware.*
bRTCFailure BOOL The main processor is unable to communi-

cate with the RTC hardware.

bIntegratedIoFailure BOOL The main processor is unable to communi-
cate with the integrated I/O hardware.

256

6. MAINTENANCE

DG_XP3xx.tDetailed.* Type Description

Exception.*
wExceptionCode WORD Exception code generated by the RTS.

byProcessorLoad BYTE Level, in percentage (%), of charge in the
processor.

WebVisualization.* byConnectedClients BYTE Clients number connected to the WebVisu-
alization.

RetainInfo.*

byCPUInitStatus BYTE

Controller startup status:
01: Hot start
02: Warm Start
03: Cold Start
PS.: These variables are restarted in all
startup.

wCPUColdStartCounter WORD
Counter of cold startups: Increments when
the PLC starts with loss of retentivity. (0 to
65535)

wCPUWarmStartCounter WORD
Counter of hot startups: Increments when
the PLC starts normally with valid retain
data. (0 to 65535)

wRTSResetCounter WORD Counter of reset performed by the RTS -
Runtime System (0 to 65535).

wWritesCounter WORD Counter of writes on retentive memory.

Reset.*
bBrownOutReset BOOL Last reset caused by failure in power sup-

ply.

bWatchdogReset BOOL Last reset caused by internal watchdog er-
ror.

byProtocol ENUM (BYTE)

Selected protocol in COM 1:
NO_PROTOCOL (0): No protocol
MODBUS_RTU_MASTER (1): MOD-
BUS RTU Master
MODBUS_RTU_SLAVE (2): MODBUS
RTU Slave
OTHER_PROTOCOL (3): Other protocol

Serial. dwRXBytes DWORD Counter of characters received from COM
1 (0 to 4294967295).

COM1.* dwTXBytes DWORD Counter of characters transmitted from
COM 1 (0 to 4294967295).

wRXPendingBytes WORD Number of characters left in the reading
buffer in COM 1 (0 to 4095).

wTXPendingBytes WORD Number of characters left in the transmis-
sion buffer in COM 1 (0 to 1023).

wBreakErrorCounter WORD These counters are restarted in the follow-
ing conditions:

wParityErrorCounter WORD - Energizing
wFrameErrorCounter WORD - COM 1 serial port configuration
wRXOverrunCounter WORD - Removal of RX and TX queues

PS.: When the controller is set Without
Parity, the parity errors counter is not incre-
mented in case it receives a different par-
ity. In this case, an error of frame is indi-
cated. The maximum value of each counter
is 65535.

bBusAlarm BOOL The bus has a critical error and is shut-
down.

257

6. MAINTENANCE

DG_XP3xx.tDetailed.* Type Description

byBusState ENUM (BYTE)

Informs the status of the device:
UNKNOWN: impossible to get the net-
work state.
ERR_FREE: no occurrence of CAN bus
errors.
ACTIVE: only few CAN bus errors (below
warning level).
WARNING: occurence of some CAN bus
errors (above warning level).
PASSIVE: too many CAN bus errors
(above error level).
BUSOFF: the node is shutdown (errors ex-
ceeded the admissible maximum).

CAN.* udiTxCounter UDINT Number of packets Tx changed in the PLC
CAN bus.

udiRxCounter UDINT Number of packets Rx changed in the PLC
CAN bus.

udiTxErrorCounter UDINT Number of packets Tx with errors in the
PLC CAN bus.

udiRxErrorCounter UDINT Number of packets Rx with errors in the
PLC CAN bus.

udiLostCounter UDINT Number of lost packets in the PLC CAN
bus.

byUSBDevice ENUM (BYTE)
Type of the device connected to the USB
port:
NO_DEVICE
UNKNOWN_DEVICE
MASS_STORAGE_DEVICE
SERIAL_CONVERTER_DEVICE
MODEM_DEVICE
WIFI_ADAPTER_DEVICE
ETHERNET_ADAPTER_DEVICE

bOvercurrent BOOL The device connected on the USB port is
draining more current than supported

tMassStorage.
ENUM (BYTE)

Informs the status of the device:
byMountState MOUNTED

UNMOUNTED
tMassStorage.
dwFreeSpaceKb

DWORD Informs the free space on the mass storage
device.

tMassStorage.
dwTotalSizeKb

DWORD Informs the total size of the mass storage
device.

tSerialConverter. ENUM (BYTE) Selected protocol in COM 10:
byProtocol NO_PROTOCOL (0): No protocol

USB.*
tSerialConverter.
dwRXBytes

DWORD Counter of characters received from COM
10 (0 to 4294967295).

tSerialConverter.
dwTXBytes

DWORD Counter of characters transmitted from
COM 10 (0 to 4294967295).

tSerialConverter.
wRXPendingBytes

WORD Number of characters left in the reading
buffer in COM 10 (0 to 4095).

tSerialConverter.
wTXPendingBytes

WORD Number of characters left in the transmis-
sion buffer in COM 10 (0 to 1023).

258

6. MAINTENANCE

DG_XP3xx.tDetailed.* Type Description
tSerialConverter.
wBreakErrorCounter

WORD These counters are restarted in the follow-
ing conditions:

tSerialConverter.
wParityErrorCounter

WORD - Energizing

tSerialConverter.
wFrameErrorCounter

WORD - COM 10 serial port configuration

tSerialConverter.
wRXOverrunCounter

WORD - Removal of RX and TX queues

PS.: When the controller is set Without
Parity, the parity errors counter is not incre-
mented in case it receives a different par-
ity. In this case, an error of frame is indi-
cated. The maximum value of each counter
is 65535.

tModem.
bConfigured

BOOL Indicates that the modem was configured
in the Web page.

tModem. ENUM (BYTE) The modem connection state:

byConnectionState DISCONNECTED (1): modem is not con-
nected or configured.
CONNECTING (2): device configured,
trying to connect to the Internet.
FAILED_RETRYING (3): connection
failed, the modem will try to connect again.
CONNECTED (4): modem connected and
up, the IP is available in the szIP diagnos-
tic.

tModem.
szIP

STRING String with IP address used by the modem.

tWifiAdapter.
bConfigured

BOOL Indicates that the WiFi adapter was config-
ured in the Web page.

tWifiAdapter. ENUM (BYTE) The WiFi adapter connection state:

byConnectionState DISCONNECTED (1): WiFi is not con-
nected and/or configured.
CONNECTING (2): device configured,
trying to connect to WiFi network.
FAILED_RETRYING (3): connection
failed, the WiFi will try to connect again.
This can occur due to wrong password or
the network is not available.
CONNECTED (4): WiFi adapter con-
nected to the network.

tWifiAdapter.
szIP

STRING String with the IP used in the WiFi net-
work.

tWifiAdapter.
szMask

STRING String with the WiFi network mask.

tWifiAdapter.
szGateway

STRING String with the WiFi network Gateway.

tWifiAdapter.
szMAC

STRING String with WiFi adapter’s MAC address
(exclusive for the device).

tEthernetAdapter.
bLinkDown

BOOL Indicates the link state of the Ethernet
adapter’s interface.

259

6. MAINTENANCE

DG_XP3xx.tDetailed.* Type Description
tEthernetAdapter.
szIP

STRING String with the IP used by Ethernet adapter.

tEthernetAdapter.
szMask

STRING String with the network mask used by Eth-
ernet adapter.

tEthernetAdapter.
szGateway

STRING String with the network Gateway used by
Ethernet adapter.

tEthernetAdapter.
szMAC

STRING String with Ethernet adapter’s MAC ad-
dress (exclusive for the device).

bLinkDown BOOL Indicates the link state in the interface.

wProtocol WORD Selected protocol in NET 1:
00: Without protocol

wProtocol.
bMODBUS_RTU_
ETH_Client

BOOL MODBUS RTU Client via TCP

wProtocol.
bMODBUS_ETH_
Client

BOOL MODBUS TCP Client

wProtocol.
bMODBUS_RTU_
ETH_Server

BOOL MODBUS RTU Server via TCP

wProtocol.
bMODBUS_ETH_
Server

BOOL MODBUS TCP Server

Ethernet. szIP STRING(15) Port IP Address
NET1.* szMask STRING(15) Port Subnet Mask

szGateway STRING(15) Port Gateway Address
szMAC STRING(15) Port MAC Address
abyIP BYTE ARRAY(4) Port IP Address

abyMask BYTE ARRAY(4) Port Subnet Mask
abyGateway BYTE ARRAY(4) Port Gateway Address

abyMAC BYTE ARRAY(6) Port MAC Address

dwPacketsSent DWORD Counter of packets sent through the inter-
face (0 to 4294967295).

dwPacketsReceived DWORD Counter of packets received through the in-
terface (0 to 4294967295).

dwBytesSent DWORD Counter of bytes sent through the interface
(0 to 4294967295).

dwBytesReceived DWORD Counter of bytes received through the port
(0 to 4294967295).

dwTXDropErrors DWORD
Counter of connection losses in the
transmission through the interface (0 to
4294967295).

dwTXCollisionErrors DWORD
Counter of collision errors in the trans-
mission through the interface (0 to
4294967295).

dwRXDropErrors DWORD
Counter of connection losses in the
reception through the interface (0 to
4294967295).

dwRXFrameErrors DWORD Counter of frame errors in the reception
through the interface (0 a 4294967295).

UserFiles.*
byMounted BYTE Indicates if the memory used for recording

the user files is able to receive data.

260

6. MAINTENANCE

DG_XP3xx.tDetailed.* Type Description
dwFreeSpacekB DWORD Free memory space for user files (Kbytes).

dwTotalSizekB DWORD Storage capacity of the memory of user
files (Kbytes).

UserLogs.*
byMounted BYTE Status of memory in which the user logs

are inserted.
wFreeSpacekB WORD Free memory space of user logs (Kbytes)

wTotalSizekB WORD Storage capacity of the memory of user
logs (Kbytes).

byCPUState ENUM (BYTE)
Informs the operation state of the CPU:
01: All user applications are in Run Mode
03: All user applications is in Stop Mode

Application.* bForcedIOs BIT There is one or more forced I/O points.

bNetDefinedByWeb BIT The IP address is set by the System Web
Page.

Application
Info.*

dwApplicationCRC DWORD
32 bits CRC of Application. When the ap-
plication is modified and sent to the con-
troller, a new CRC is generated.

SNTP.*

bServiceEnabled BOOL SNTP Service enabled.

byActiveTimeServer ENUM (BYTE)

Indicates which server is active:
NO_TIME_SERVER (0): None active
server.
PRIMARY_TIME_SERVER (1): Active
Primary Server.
SECONDARY_TIME_SERVER (2): Ac-
tive Secondary Server.

wPrimaryServerDownCount WORD Counter of times in which the primary
server is unavailable (0 to 65535).

wSecondaryServerDownCount WORD Counter of times in which the secondary
server is unavailable (0 to 65535).

dwRTCTimeUpdatedCount DWORD Counter of times the RTC was updated by
the SNTP service (0 to 4294967295).

byLastUpdateSuccessful ENUM (BYTE)

Last update status:
NOT_UPDATED (0): Not updated.
UPDATE_FAILED (1): Failure.
UPDATE_SUCCESSFUL (2): Successful.

byLastUpdateTimeServer ENUM (BYTE)

Server used in the last update:
NO_TIME_SERVER (0): None update.
PRIMARY_TIME_SERVER (1): Primary
Server.
SECONDARY_TIME_SERVER (2): Sec-
ondary Server.

sLastUpdateTime.
byDayOfMonth

BYTE

sLastUpdateTime.
byMonth

BYTE

sLastUpdateTime.
wYear

WORD Date and time of the last sync time via
SNTP.

sLastUpdateTime.
byHours

BYTE

sLastUpdateTime.
byMinutes

BYTE

261

6. MAINTENANCE

DG_XP3xx.tDetailed.* Type Description
sLastUpdateTime.
bySeconds

BYTE

sLastUpdateTime.
wMilliseconds

WORD

IntegratedIO.*

AnalogInputs.
tAnalogInput_xx.
bInputNotEnable

BOOL The input channel is not enabled on the
configuration.

AnalogInputs.
tAnalogInput_xx.
bOverRange

BOOL
The input signal level is above the maxi-
mum value defined for the selected input
type.

AnalogInputs.
tAnalogInput_xx.
bOpenLoop

BOOL The input signal level is below minimum
(only for 4-20mA mode).

AnalogOutputs.
tAnalogOutput_xx.
bOutputNotEnable

BOOL The output channel is not enabled on the
configuration.

AnalogOutputs.
tAnalogOutput_xx.
bOpenLoop

BOOL
The impedance of the load connected to the
output channel is above the maximum ac-
cepted (only for current output mode).

AnalogOutputs.
tAnalogOutput_xx.
bShortCircuit

BOOL
The impedance of the load connected to the
output channel is below the minimum ac-
cepted (only for voltage output mode).

RTDInputs.
tRtdInput_xx.
bInputNotEnable

BOOL The input channel is not enabled on the
configuration.

RTDInputs.
tRtdInput_xx.
bOverRange

BOOL The resistance is above the maximum
value defined for the selected type.

RTDInputs.
tRtdInput_xx.
bUnderRange

BOOL
The resistance is below the minimum value
defined for the selected type (only for tem-
perature sensors).

VPN operating mode:

OpenVPN.*

SERVER (0): The device is operating as a
server.byOperationMode ENUM (BYTE)
CLIENT (1): The device is operating as a
client.

bServiceEnabled BIT VPN service enabled.
bServiceRunning BIT VPN service running.

byConnectionState ENUM (BYTE)

VPN connection state:
DISCONNECTED (0): Device discon-
nected from VPN.
CONNECTING (1): Device configured,
trying to connect to VPN.
CONNECTED (2): Device connected to
VPN.

uliConnectionTime ULINT Current connection time in seconds.
sIPAddress STRING(15) VPN IP address.

dwConnectedClients DWORD Number of connected clients.

dwTransmittedBytes DWORD Number of bytes transmitted via VPN
communication.

262

6. MAINTENANCE

DG_XP3xx.tDetailed.* Type Description

dwReceivedBytes DWORD Number of bytes received via VPN com-
munication.

CACertificate.
CertificateName

STRING(64) CA certificate name.

CACertificate.
CommonName

STRING(64) CA certificate common name.

CACertificate.
sStartDate.
byDayOfMonth

BYTE

CACertificate.
sStartDate.
byMonth

BYTE

CACertificate.
sStartDate.
wYear

WORD

CACertificate.
sStartDate.
byHours

BYTE Start date and time of the CA certificate.

CACertificate.
sStartDate.
byMinutes

BYTE

CACertificate.
sStartDate.
bySeconds

BYTE

CACertificate.
sStartDate.
wMilliseconds

WORD

CACertificate.
sExpirationDate.
byDayOfMonth

BYTE

CACertificate.
sExpirationDate.
byMonth

BYTE

CACertificate.
sExpirationDate.
wYear

WORD

CACertificate.
sExpirationDate.
byHours

BYTE Expiration date and time of the CA certifi-
cate.

CACertificate.
sExpirationDate.
byMinutes

BYTE

CACertificate.
sExpirationDate.
bySeconds

BYTE

CACertificate.
sExpirationDate.
wMilliseconds

WORD

CACertificate.
dwValidDaysLeft

DWORD Days left until the CA certificate expires.

263

6. MAINTENANCE

DG_XP3xx.tDetailed.* Type Description
DeviceCertificate.
CertificateName

STRING(64) Device certificate name.

DeviceCertificate.
CommonName

STRING(64) Device certificate common name.

DeviceCertificate.
sStartDate.
byDayOfMonth

BYTE

DeviceCertificate.
sStartDate.
byMonth

BYTE

DeviceCertificate.
sStartDate.
wYear

WORD

DeviceCertificate.
sStartDate.
byHours

BYTE Start date and time of the Device certifi-
cate.

DeviceCertificate.
sStartDate.
byMinutes

BYTE

DeviceCertificate.
sStartDate.
bySeconds

BYTE

DeviceCertificate.
sStartDate.
wMilliseconds

WORD

DeviceCertificate.
sExpirationDate.
byDayOfMonth

BYTE

DeviceCertificate.
sExpirationDate.
byMonth

BYTE

DeviceCertificate.
sExpirationDate.
wYear

WORD

DeviceCertificate.
sExpirationDate.
byHours

BYTE Expiration date and time of the Device cer-
tificate.

DeviceCertificate.
sExpirationDate.
byMinutes

BYTE

DeviceCertificate.
sExpirationDate.
bySeconds

BYTE

DeviceCertificate.
sExpirationDate.
wMilliseconds

WORD

DeviceCertificate.
dwValidDaysLeft

DWORD Days left until the Device certificate ex-
pires.

sDeviceKeyName STRING(64) Device private key name.

Firewall.*

bServiceEnabled BIT Firewall service enabled.

264

6. MAINTENANCE

DG_XP3xx.tDetailed.* Type Description
sLatsModificationDateUTC.
byDayOfMonth

BYTE

sLatsModificationDateUTC.
byMonth

BYTE

sLatsModificationDateUTC.
wYear

WORD

sLatsModificationDateUTC.
byHours

BYTE Date and time when the firewall rules were
last modified, in UTC.

sLatsModificationDateUTC.
byMinutes

BYTE

sLatsModificationDateUTC.
bySeconds

BYTE

sLatsModificationDateUTC.
wMilliseconds

WORD

FTP.*

bServiceEnabled BIT FTP server enabled.

dwConnectedClients DWORD Number of FTP clients connected simulta-
neously.

sLatsModificationDateUTC.
byDayOfMonth

BYTE

sLatsModificationDateUTC.
byMonth

BYTE

sLatsModificationDateUTC.
wYear

WORD

sLatsModificationDateUTC.
byHours

BYTE Date and time when the FTP Server set-
tings were last modified, in UTC.

sLatsModificationDateUTC.
byMinutes

BYTE

sLatsModificationDateUTC.
bySeconds

BYTE

sLatsModificationDateUTC.
wMilliseconds

WORD

Table 197: Detailed Diagnostics Description

Notes:
Exception Code: The exception codes generated by the RTS (Runtime System) is presented below:

Code Description Code Description
0x0000 There is no exception code. 0x0051 Access violation.

0x0010 Watchdog time of the expired IEC
task (Software Watchdog). 0x0052 Privileged instruction.

0x0012 I/O configuration error. 0x0053 Page failure.

0x0013 Check-up errors after program
download. 0x0054 Stack overflow.

0x0014 Fieldbus error. 0x0055 Invalid disposition.
0x0015 I/O updating error. 0x0056 Invalid maneuver.
0x0016 Cycle time (execution) exceeded. 0x0057 Protected page.
0x0017 Program online updating too long 0x0058 Double failure.
0x0018 Unsolved external references. 0x0059 Invalid OpCode.

265

6. MAINTENANCE

Code Description Code Description
0x0019 Download rejected. 0x0100 Data type misalignment.

0x001A Project unloaded, as the retentive
variables cannot be reallocated. 0x0101 Arrays limit exceeded.

0x001B Project unloaded and deleted. 0x0102 Division by zero.
0x001C Out of memory stack. 0x0103 Overflow.

0x001D Corrupted retentive memory; can-
not be mapped. 0x0104 Cannot be continued.

0x001E Project can be loaded but it causes
a break later on. 0x0105 Watchdog in the processor load of

all IEC task detected.

0x0021 Target of startup application does
not match to the current target. 0x0150 FPU: Not specified error.

0x0022

Scheduled tasks error... IEC task
configuration failure. Application
working with wrong target. Illegal
instruction.

0x0151 FPU: Abnormal operand.

0x0152 FPU: Division by zero.
0x0023 Downloaded file Check-up error. 0x0153 FPU: Inexact result.

0x0024
Mismatch between the retentive
identity and the current boot project
program identity

0x0154 FPU: Invalid operation.

0x0025 IEC task configuration failure. 0x0155 FPU: Overflow.

0x0026 Application is running with the
wrong target. 0x0156 FPU: Stack verification.

0x0050 Illegal instruction. 0x0157 FPU: Underflow.

Table 198: Exception Codes

Brownout Reset: The brownout reset diagnostic is only true when the power supply exceeds the minimum limit required in
its technical features, remaining in low voltage, without suffering any interruption. The controller identifies the voltage break
and indicates the power supply failure diagnostic. When the voltage is reestablished, the controller is restarted automatically
and indicates the brownout reset diagnostic.

Parity Error Counter: When the serial COM 1 is configured Without Parity, this error counter won’t be incremented
when it receives a message with a different parity. In this case, a frame error will be indicated.

User Partition: The user partition is a memory area reserved for the storage of data in the CPU. For example: files with
PDF extension, files with DOC extension and other data.

RTD Inputs: the table below describes the behavior of over and under range diagnostics according to the input type
selected:

Diagnostics 0 to 400 Ω Scale 0 to 4000 Ω Scale
Sensors of Platinum
type (Pt) α =
0.00385

Sensors of Platinum
type (Pt) α =
0.003916

Resist. Count Resist. Count Temp. Count Temp. Count

Over range
>420 Ω
(420 to
404.1 Ω)

4200
(4200 to
4041)

>4200 Ω
(4200 to
4041 Ω)

>4200
(4200 to
4041)

>850
◦C

8500 >630 ◦C 6300

No diagnostics 0 to 404 Ω 0 to 4040 0 to 4040
Ω

0 to 4040 -200 to
850 ◦C

-2000 to
8500

-200 to 630
◦C

-2000 to
6300

Under range - - - - <-200 ◦C -2000 <-200 ◦C -2000

Table 199: RTD Input Diagnostics

266

6. MAINTENANCE

6.1.4. Diagnostics via Function Blocks

The function blocks allow the visualization of some parameters which cannot be accessed otherwise. The function regard-
ing advanced diagnostics is in the NextoStandard library and is described below.

6.1.4.1. GetTaskInfo

This function returns the task information of a specific application.

Figure 197: GetTaskInfo Function

Below, the parameters that must be sent to the function for it to return the application information are described.

Input parameter Type Description
psAppName POINTER TO STRING Application name.
psTaskName POINTER TO STRING Task name.

pstTaskInfo POINTER TO stTask-
Info

Pointer to receive the application informa-
tion.

Table 200: GetTaskInfo Input Parameters

The data returned by the function, through the pointer informed in the input parameters are described on table below.

Returned Parameters Size Description

dwCurScanTime DWORD Task cycle time (execution) with 1 µs res-
olution.

dwMinScanTime DWORD Task cycle minimum time with 1 µs reso-
lution.

dwMaxScanTime DWORD Task cycle maximum time 1 µs resolution.

dwAvgScanTime DWORD Task cycle average time with 1 µs resolu-
tion.

dwLimitMaxScan DWORD Task cycle maximum time before watch-
dog occurrence.

dwIECCycleCount DWORD IEC cycle counter.

Table 201: GetTaskInfo Output Parameters

Possible ERRORCODE:

NoError: success execution;
TaskNotPresent: the desired task does not exist.

Example of utilization in ST language:

267

6. MAINTENANCE

PROGRAM UserPrg
VAR
sAppName : STRING;
psAppName : POINTER TO STRING;
sTaskName : STRING;
psTaskName : POINTER TO STRING;
pstTaskInfo : POINTER TO NextoStandard.stTaskInfo;
TaskInfo :NextoStandard. stTaskInfo;
Info : NextoStandard.ERRORCODE;
END_VAR
//INPUTS:
sAppName := 'Application'; //Variable receives the application name.
psAppName := ADR(sAppName); //Pointer with application name.
sTaskName := 'MainTask'; //Variable receives task name.
psTaskName := ADR(sTaskName); //Pointer with task name.
pstTaskInfo := ADR(TaskInfo); //Pointer that receives task info.
//FUNCTION:
//Function call.
Info := GetTaskInfo (psAppName, psTaskName, pstTaskInfo);
//Variable Info receives possible function errors.

6.2. Preventive Maintenance
It must be verified, each year, if the interconnection cables are connected firmly, without dust accumulation, mainly the
protection devices
In environments subjected to excessive contamination, the equipment must be periodically cleaned from dust, debris,
etc.
The TVS diodes used for transient protection caused by atmospheric discharges must be periodically inspected, as they
might be damaged or destroyed in case the absorbed energy is above limit. In many cases, the failure may not be visual.
In critical applications, is recommendable the periodic replacement of the TVS diodes, even if they do not show visual
signals of failure
Connector block tightness and cleanness every six months

268

7. APPENDIXES

7. Appendixes
7.1. TLS Key and Certificate Management

This section covers the generation of security files, certificates, and keys using TLS. The certificates commented on below
are signed by CA. This type of certificate considers an entity, called Certificate Authority (CA), to generate the certificates.
This entity can be an official authority service or a simple computer. It is only necessary to restrict access to the CA to avoid
any security breach since this entity can generate certificates for any device. The image below shows how each device interacts
with the files.

Figure 198: TLS Certificate Generation Flow

First of all, the generated files are private keys. Each device has its key file, created either by the CA entity or the device
itself. The most important file is the CA private key ca.key, which must not leave the entity. The CA entity generates its
certificate based on its private key ca.crt. This certificate is a public file used by the devices to validate the VPN connection.
Generating certificates from the device first requires a request file (.csr or .req depending on the tool) based on the device’s
private key. This document presents two possible tools for generating certificate files: Easy-RSA and OpenSSL.

Make sure you have the date and time set correctly in the CA entity so that the generation of the certificates is based on a
current setting.

7.1.1. Easy-RSA Certificate Generation

The OpenVPN project provides this tool to help with the certificate and keys. Easy-RSA is available for Windows and
Linux. See below for step-by-step instructions to generate the files in a Windows configuration:

1- Open a Windows prompt in the Easy-RSA folder and run .\EasyRSA-Start.bat to enter the tool shell.

Figure 199: Certificate Generation using Easy-RSA (step 1)

269

7. APPENDIXES

2 - Copy the file vars.example and rename it to vars in the tools folder.

Figure 200: Certificate Generation using Easy-RSA (step 2)

3- Open the file vars with a text editor and change the Certification Authority information.

Figure 201: Certificate Generation using Easy-RSA (step 3)

270

7. APPENDIXES

4- Use the command ./easyrsa init-pki to prepare the configuration.

Figure 202: Certificate Generation using Easy-RSA (step 4)

5- Then type ./easyrsa build-ca nopass to generate the CA certificate. Remove the nopass argument if you want to set a
password for the file. Enter the common name of the CA certificate when prompted (press enter to use the default Easy-RSA
CA as the common name).

Figure 203: Certificate Generation using Easy-RSA (step 5)

6 - Generate the device key and request files using the command ./easyrsa gen-req DeviceName nopass. Change the
DeviceName with the desired common name. Again, remove the nopass argument to use a password for the certificate file.
When entering the Common Name as an argument, simply press Enter when prompted (red square).

271

7. APPENDIXES

Figure 204: Certificate Generation using Easy-RSA (step 6)

7- Finally, type ./easyrsa sign-req server DeviceName to generate the device certificate. The DeviceName is the desired
common name, and the server is the type (use client if you are generating for a VPN client).

Figure 205: Certificate Generation using Easy-RSA (step 7)

8- Repeat steps 6 and 7 to generate more device certificates.
9- Find the ca.crt in the pki folder, the device private keys in the pki/private path, and the device certificates in the pki/issued

directory.

272

7. APPENDIXES

Figure 206: Certificate Generation using Easy-RSA (step 9)

7.1.2. OpenSSL Certificate Generation

OpenSSL is an open-source package with tools that help generate many files and security features. This package is native
to most Linux distributions and is available for Windows. Just remember to set the OpenSSL folder in the PATH (environment
variable) to allow you to use the command from anywhere via the prompt. Find below the step-by-step using this feature (all
files can have any name as desired, the steps consider only an example):

1- Open a prompt in the certificate folder (where you will create the files).
2- Generate the CA private key with the following command: openssl genrsa -out ca.key 4096.

Figure 207: Certificate Generation using OpenSSL (step 2)

3- Then generate the CA certificate based on the private key, using the openssl req -new -x509 -days 365 -key ca.key -out
ca.crt command.

The parameter -days represents the expiration time for the certificate. Set it as desired. In this example, the certificate is
valid for one year. Fill in the values requested at the prompt as needed (press enter to use the default, which is enclosed in
square brackets []). It is mandatory to define a Common Name for the certificate work.

Figure 208: Certificate Generation using OpenSSL (step 3)

273

7. APPENDIXES

4- Now generate the device’s private key, similar to step 2, using the command openssl genrsa -out DeviceName.key 2048.

Figure 209: Certificate Generation using OpenSSL (step 4)

5- After that, generate the certificate request file based on the private key using the command openssl req -new -key
DeviceName.key -out DeviceName.csr.

Enter the desired information, and remember to use a common name other than CA.

Figure 210: Certificate Generation using OpenSSL (step 5)

6- Finally, generate the device certificate using the CA private key, the CA certificate, and the device certificate request file
using the openssl x509 -req -days 365 -in DeviceName.csr -CA ca.crt -CAkey ca.key -set_serial 01 -out command.

Set the expiration date as desired with the parameter -days and the serial number of the certificate with the argument
-set_serial.

Figure 211: Certificate Generation using OpenSSL (step 6)

7- Repeat steps 4 to 6 for any new device.
8- (Optional) OpenSSL provides a tool to verify that the device certificate works with CA:
Use the command openssl verify -purpose sslserver -CAfile ca.crt DeviceName.crt.

Figure 212: Certificate Generation using OpenSSL (step 8)

274

7. APPENDIXES

7.1.3. TA Key Generation by OpenVPN

The OpenVPN project provides a tool for generating a TLS key, commonly called ta.key. This key is an extra layer of
protection on OpenVPN’s UDP/TCP communication ports, so the use of this key can be interpreted as an HMAC Firewall for
VPN communication, requiring the existence of the parameter on both sides of the communication for it to be established.

The key generation can be done with the following command: openvpn –genkey secret ta.key. Example of using the
command in Windows:

Figure 213: TA Key Generation in Windows

To execute the command, we used the executable installed with the OpenVPN package. The directory used in the image
above is an example and is optional. You can use only the desired file name too.

The command can be used to generate the key from Linux, but there is a minor change in the command compared to
Windows. To generate the key on Linux, use the following command: openvpn –genkey –secret ta.key. To run it, type the
command in the terminal, as follows the example:

Figure 214: TA Key Generation in Linux

This parameter is not mandatory for VPN communication, but if the server uses it, all its clients must also use it, and the
key for the server and the clients must be the same.

275

	1 Introduction
	1.1 Documents Related to this Manual
	1.2 Visual Inspection
	1.3 Technical Support
	1.4 Warning Messages Used in this Manual

	2 Technical Description
	2.1 Panels and Connections
	2.2 Product Features
	2.2.1 General Features
	2.2.2 Standards and Certifications
	2.2.3 Memory
	2.2.4 Protocols
	2.2.5 RS-485
	2.2.6 CAN
	2.2.7 USB
	2.2.8 Ethernet
	2.2.9 Power Supply
	2.2.10 Digital Inputs
	2.2.11 Fast Inputs
	2.2.12 Digital Outputs
	2.2.13 Fast Outputs
	2.2.14 Analog Inputs
	2.2.15 Analog Outputs

	2.3 Compatibility with Other Products
	2.4 Performance
	2.4.1 Interval Time
	2.4.2 Application Times
	2.4.3 Time for Instructions Execution
	2.4.4 Initialization Times

	2.5 Physical Dimensions
	2.6 Purchase Data
	2.6.1 Integrant Items
	2.6.2 Product Code

	2.7 Related Products

	3 Installation
	3.1 Mechanical Installation
	3.1.1 Installing the controller
	3.1.2 Removing the controller

	3.2 Electrical Installation
	3.3 Ethernet Network Connection
	3.3.1 IP Address
	3.3.2 Gratuitous ARP
	3.3.3 Network Cable Installation

	3.4 Serial RS-485 and CAN Network Connection

	4 Initial Programming
	4.1 Memory Organization and Access
	4.2 Project Profiles
	4.2.1 Machine Profile

	4.3 CPU Configuration
	4.4 Libraries
	4.5 Inserting a Protocol Instance
	4.5.1 MODBUS Ethernet

	4.6 Finding the Device
	4.7 Login
	4.8 Run Mode
	4.9 Stop Mode
	4.10 Writing and Forcing Variables
	4.11 Logout
	4.12 Project Upload
	4.13 CPU Operating States
	4.13.1 Run
	4.13.2 Stop
	4.13.3 Breakpoint
	4.13.4 Exception
	4.13.5 Reset Warm
	4.13.6 Reset Cold
	4.13.7 Reset Origin
	4.13.8 Reset Process Command (IEC 60870-5-104)

	4.14 Programs (POUs) and Global Variable Lists (GVLs)
	4.14.1 MainPrg Program
	4.14.2 StartPrg Program
	4.14.3 UserPrg Program
	4.14.4 GVL IntegratedIO
	4.14.5 GVL System_Diagnostics
	4.14.6 GVL Disables
	4.14.7 GVL Qualities
	4.14.8 GVL ReqDiagnostics

	5 Configuration
	5.1 Device
	5.1.1 User Management and Access Rights
	5.1.2 PLC Settings

	5.2 Controller's CPU
	5.2.1 General Parameters
	5.2.2 Time Synchronization
	5.2.2.1 IEC 60870-5-104
	5.2.2.2 SNTP
	5.2.2.3 Daylight Saving Time (DST)

	5.2.3 Internal Points
	5.2.3.1 Quality Conversions
	5.2.3.1.1 Internal Quality
	5.2.3.1.2 IEC 60870-5-104 Conversion
	5.2.3.1.3 MODBUS Internal Quality

	5.3 Serial Interface
	5.3.1 COM 1
	5.3.2 Advanced Configurations

	5.4 Ethernet Interface
	5.4.1 NET 1
	5.4.2 Reserved TCP/UDP Ports

	5.5 Controller Area Network Interface
	5.5.1 CAN

	5.6 Integrated I/O
	5.6.1 Digital Inputs
	5.6.2 Fast Inputs
	5.6.2.1 High-Speed Counters
	5.6.2.1.1 Counter Interrupts

	5.6.2.2 External Interruption

	5.6.3 Fast Outputs
	5.6.3.1 VFO/PWM
	5.6.3.2 PTO

	5.6.4 Analog Inputs
	5.6.5 RTD Inputs
	5.6.6 Analog Outputs
	5.6.7 I/O Mapping

	5.7 Management Tab Access
	5.7.1 System Section
	5.7.1.1 Clock Setting
	5.7.1.1.1 Computer Time (UTC)
	5.7.1.1.2 Custom Time (UTC)

	5.7.2 Network Section
	5.7.2.1 Network Section Configurations
	5.7.2.1.1 Defined by Application
	5.7.2.1.2 Defined by web page

	5.7.2.2 Network Sniffer

	5.8 USB Port
	5.8.1 Mass Storage Devices
	5.8.1.1 General Storage
	5.8.1.2 Not Loading the Application at Startup
	5.8.1.3 Transfering an Application from the USB device

	5.8.2 USB to RS-232 Converters
	5.8.3 Modem Devices
	5.8.4 WiFi Adapters
	5.8.5 Ethernet Adapters

	5.9 Communication Protocols
	5.9.1 Protocol Behavior x CPU State
	5.9.2 Double Points
	5.9.3 CPU’s Events Queue
	5.9.3.1 Consumers
	5.9.3.2 Queue Functioning Principles
	5.9.3.2.1 Overflow Sign

	5.9.3.3 Producers

	5.9.4 Interception of Commands Coming from the Control Center
	5.9.5 MODBUS RTU Master
	5.9.5.1 MODBUS Master Protocol Configuration by Symbolic Mapping
	5.9.5.1.1 MODBUS Master Protocol General Parameters – Symbolic Mapping Configuration
	5.9.5.1.2 Devices Configuration – Symbolic Mapping configuration
	5.9.5.1.3 Mappings Configuration – Symbolic Mapping Settings
	5.9.5.1.4 Requests Configuration – Symbolic Mapping Settings

	5.9.6 MODBUS RTU Slave
	5.9.6.1 MODBUS Slave Protocol Configuration via Symbolic Mapping
	5.9.6.1.1 MODBUS Slave Protocol General Parameters – Configuration via Symbolic Mapping
	5.9.6.1.2 Configuration of the Relations – Symbolic Mapping Setting

	5.9.7 MODBUS Ethernet
	5.9.8 MODBUS Ethernet Client
	5.9.8.1 MODBUS Ethernet Client Configuration via Symbolic Mapping
	5.9.8.1.1 MODBUS Client Protocol General Parameters – Configuration via Symbolic Mapping
	5.9.8.1.2 Device Configuration – Configuration via Symbolic Mapping
	5.9.8.1.3 Mappings Configuration – Configuration via Symbolic Mapping
	5.9.8.1.4 Requests Configuration – Configuration via Symbolic Mapping

	5.9.8.2 MODBUS Client Relation Start in Acyclic Form

	5.9.9 MODBUS Ethernet Server
	5.9.9.1 MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping
	5.9.9.1.1 MODBUS Server Protocol General Parameters – Configuration via Symbolic Mapping
	5.9.9.1.2 MODBUS Server Diagnostics – Configuration via Symbolic Mapping
	5.9.9.1.3 Mapping Configuration – Configuration via Symbolic Mapping

	5.9.10 OPC DA Server
	5.9.10.1 Creating a Project for OPC DA Communication
	5.9.10.2 Configuring a PLC on the OPC DA Server
	5.9.10.2.1 Importing a Project Configuration

	5.9.10.3 OPC DA Communication Status and Quality Variables
	5.9.10.4 Limits of Communication with OPC DA Server
	5.9.10.5 Accessing Data Through an OPC DA Client

	5.9.11 OPC UA Server
	5.9.11.1 Creating a Project for OPC UA Communication
	5.9.11.2 Types of Supported Variables
	5.9.11.3 Limit Connected Clients on the OPC UA Server
	5.9.11.4 Limit of Communication Variables on the OPC UA Server
	5.9.11.5 Encryption Settings
	5.9.11.6 Main Communication Parameters Adjusted in an OPC UA Client
	5.9.11.6.1 Endpoint URL
	5.9.11.6.2 Publishing Interval (ms) e Sampling Interval (ms)
	5.9.11.6.3 Lifetime Count e Keep-Alive Count
	5.9.11.6.4 Queue Size e Discard Oldest
	5.9.11.6.5 Filter Type e Deadband Type
	5.9.11.6.6 PublishingEnabled, MaxNotificationsPerPublish e Priority

	5.9.11.7 Accessing Data Through an OPC UA Client

	5.9.12 EtherCAT Master
	5.9.12.1 Installing and inserting EtherCAT Devices
	5.9.12.1.1 EtherCAT - Scan Devices

	5.9.12.2 EtherCAT Master Settings
	5.9.12.2.1 EtherCAT Master - General
	5.9.12.2.2 EtherCAT Master - Sync Unit Assignment
	5.9.12.2.3 EtherCAT Master - Overview
	5.9.12.2.4 EtherCAT Master - I/O Mapping
	5.9.12.2.5 EtherCAT Master - IEC Objects
	5.9.12.2.6 EtherCAT Master - Status / Information Tabs

	5.9.12.3 EtherCAT Slave Configuration
	5.9.12.3.1 EtherCAT Slave - General
	5.9.12.3.2 EtherCAT Slave - Process Data
	5.9.12.3.3 EtherCAT Slave - Edit PDO List
	5.9.12.3.4 EtherCAT Slave - Startup Parameters
	5.9.12.3.5 EtherCAT Slave - I/O Mapping
	5.9.12.3.6 EtherCAT Slave - Status and Information

	5.9.13 EtherNet/IP
	5.9.13.1 EtherNet/IP
	5.9.13.2 EtherNet/IP Scanner Configuration
	5.9.13.2.1 General
	5.9.13.2.2 Connections
	5.9.13.2.3 Assemblies
	5.9.13.2.4 EtherNet/IP I/O Mapping

	5.9.13.3 EtherNet/IP Adapter Configuration
	5.9.13.3.1 General
	5.9.13.3.2 EtherNet/IP Adapter: I/O Mapping

	5.9.13.4 EtherNet/IP Module Configuration
	5.9.13.4.1 Assemblies
	5.9.13.4.2 EtherNet/IP Module: I/O Mapping

	5.9.14 IEC 60870-5-104 Server
	5.9.14.1 Type of data
	5.9.14.2 Double Points
	5.9.14.2.1 Digital Input Double Points
	5.9.14.2.2 Digital Output Double Points

	5.9.14.3 General Parameters
	5.9.14.4 Data Mapping
	5.9.14.5 Link Layer
	5.9.14.6 Application Layer
	5.9.14.7 Server Diagnostic
	5.9.14.8 Commands Qualifier

	5.9.15 CANopen Manager
	5.9.15.1 Installing and inserting CANopen Devices
	5.9.15.2 CANopen Manager Configuration
	5.9.15.3 CANopen Slave Configuration

	5.10 Remote I/O Mode
	5.10.1 CANopen Slave
	5.10.2 PROFINET Controller

	5.11 Communication Performance
	5.11.1 MODBUS Server
	5.11.1.1 CPU’s Local Interfaces

	5.11.2 OPC UA Server

	5.12 User Web Pages
	5.13 SNMP
	5.13.1 Introduction
	5.13.2 SNMP in Nexto Xpress Controllers
	5.13.3 Configuration SNMP
	5.13.4 User and SNMP Communities

	5.14 RTC Clock
	5.14.1 Function Blocks for RTC Reading and Writing
	5.14.1.1 Function Blocks for RTC Reading
	5.14.1.1.1 GetDateAndTime
	5.14.1.1.2 GetTimeZone
	5.14.1.1.3 GetDayOfWeek

	5.14.1.2 RTC Writing Functions
	5.14.1.2.1 SetDateAndTime
	5.14.1.2.2 SetTimeZone

	5.14.2 RTC Data Structures
	5.14.2.1 EXTENDED_DATE_AND_TIME
	5.14.2.2 DAYS_OF_WEEK
	5.14.2.3 RTC_STATUS
	5.14.2.4 TIMEZONESETTINGS

	5.15 User Files Memory
	5.16 Function Blocks and Functions
	5.16.1 Special Function Blocks for Serial Interfaces
	5.16.1.1 SERIAL_CFG
	5.16.1.2 SERIAL_GET_CFG
	5.16.1.3 SERIAL_GET_CTRL
	5.16.1.4 SERIAL_GET_RX_QUEUE_STATUS
	5.16.1.5 SERIAL_PURGE_RX_QUEUE
	5.16.1.6 SERIAL_RX
	5.16.1.7 SERIAL_RX_EXTENDED
	5.16.1.8 SERIAL_SET_CTRL
	5.16.1.9 SERIAL_TX

	5.16.2 Inputs and Outputs Update
	5.16.2.1 RefreshIntegratedIoInputs
	5.16.2.2 RefreshIntegratedIoOutputs

	5.16.3 Timer Retain
	5.16.3.1 TOF_RET
	5.16.3.2 TON_RET
	5.16.3.3 TP_RET

	5.17 FTP Server
	5.17.1 Configuration
	5.17.1.1 General Configuration
	5.17.1.1.1 Enable Server
	5.17.1.1.2 Enable Security
	5.17.1.1.3 Read-only Access
	5.17.1.1.4 Idle Timeout (Seconds)

	5.17.1.2 User Configuration
	5.17.1.2.1 Username
	5.17.1.2.2 Password

	5.17.1.3 Status
	5.17.1.3.1 Current State
	5.17.1.3.2 Connected Clients

	5.18 Firewall
	5.18.1 Introduction
	5.18.2 Configuration
	5.18.3 General Configuration
	5.18.4 User Rules

	5.19 OpenVPN
	5.19.1 Introduction
	5.19.2 Import Configuration
	5.19.3 OpenVPN Configuration
	5.19.3.1 Common Configurations
	5.19.3.1.1 Mode
	5.19.3.1.2 Protocol
	5.19.3.1.3 Logs level
	5.19.3.1.4 Keep Alive Ping
	5.19.3.1.5 Keep Alive Timeout
	5.19.3.1.6 Security Files
	5.19.3.1.7 TA Key

	5.19.3.2 Exclusive Server Configurations
	5.19.3.2.1 Network Address
	5.19.3.2.2 Communication between Clients
	5.19.3.2.3 Maximum Connected Clients
	5.19.3.2.4 Private Networks

	5.19.3.3 Exclusive Client Configurations
	5.19.3.3.1 Remote IP

	5.19.3.4 Application Settings

	5.19.4 Security Files
	5.19.5 Status Table
	5.19.6 Download Section
	5.19.7 Architectures Configuration
	5.19.7.1 Host-to-Host Configuration
	5.19.7.2 Host-to-Site Configuration
	5.19.7.3 Site-to-Site Configuration

	5.20 Motion Control (Softmotion)

	6 Maintenance
	6.1 Diagnostics
	6.1.1 Diagnostics via LED
	6.1.2 Diagnostics via System Web Page
	6.1.3 Diagnostics via Variables
	6.1.3.1 Summarized Diagnostics
	6.1.3.2 Detailed Diagnostics

	6.1.4 Diagnostics via Function Blocks
	6.1.4.1 GetTaskInfo

	6.2 Preventive Maintenance

	7 Appendixes
	7.1 TLS Key and Certificate Management
	7.1.1 Easy-RSA Certificate Generation
	7.1.2 OpenSSL Certificate Generation
	7.1.3 TA Key Generation by OpenVPN

